18 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Разбираем, что такое маска подсети, как она вычисляется и где используется

Содержание

Твой Сетевичок

Все о локальных сетях и сетевом оборудовании

Расчет маски подсети: примеры «для чайников»

В одной из предыдущих статей мы рассказывали, что такое маска подсети, и для чего она может потребоваться. Здесь же коснемся практической части и рассмотрим расчет маски подсети на конкретных примерах.

В чем назначение маски подсети в сочетании с ip-адресом?

Итак,существует пять классов маршрутизации – A, B, C, D, E. Различным организациям выделяются адреса из диапазонов A, B и C, D и E, которые используются для технических и исследовательских нужд.

Однако выделение какой-либо организации (или частному лицу в Интернете) сети из класса В – недопустимое расточительство. Например, вам нужен «белый» адрес для работы в сети Интернет.

Провайдер располагает адресами класса В и выделяет для вас одного сеть 129.16.0.0. Теперь у вас 65534 «белых» адресов, которые вы маловероятно задействуете.

Вот тут и нужна маска подсети. Маска нужна для определения, какая часть адреса относится к сети, а какая – к хосту. Адресация с использованием маски сети называется бесклассовой (от английского Classless Inter-Domain Routing или CIDR).

Маска подсети определена стандартом RFC 917.

Как именно работает и на что влияет маска подсети? Провайдеру, располагающему сетью 129.16.0.0 нет нужды отдавать ее полностью в чье-то ведение. Теперь можно разбить ее, используя маску сети на много подсетей меньшего размера.

Как разделить сеть на подсети с помощью маски подсети?

Возьмем адрес 129.16.10.1 с маской 255.255.255.0. В двоичном виде это будет выглядеть следующим образом:

129.16.10.1 = 10101100.00010000.00001010.00000001
255.255.255.0 = 11111111.11111111.11111111.00000000

Устройство, обрабатывающее IP пакет, сопоставляет адрес и маску и вычисляет, какая часть адреса принадлежит сети, а какая – хосту. Часть маски с единицами определяет сеть, а часть с нулями – хост.

Теперь, используя логическое И, можно рассчитать, как выглядит адрес подсети.

10000001.00010000.00001010.00000001
11111111.11111111.11111111.00000000
10000001.00010000.00001010.00000000 = 129.16.10.0

Коротко в десятичном виде эта запись выглядит так: 129.16.10.0 /24.

Почему 24? — Потому что именно столько бит выделено под сеть. Можно сокращать количество устройств и далее, забирая биты хостовой части и отдавая в пользу сетевой, увеличивая количество подсетей. На практике, провайдеры именно так и делают, выделяя каждому клиенту столько адресов, сколько нужно для пользования.

Как научиться считать маски подсети?

Маска подсети всегда представляет собой последовательное количество вначале единиц, а затем – нулей. Маски вида 11011111.11111111.11111111.1100000 быть не может.

Стоить учесть, что для любой подсети работает правило вычисление количества хостов:

232-n -2, где n – длина подсети. 232-24 -2 = 254 для маски 255.255.255.0.

Откуда берется -2?

Это первый и последний адреса сети: первый – адрес самой сети, последний – адрес широковещательных рассылок.

Еще для наглядности. Рассмотрим, как разделить сеть 192.168.1.0 /24 на две на подсети с помощью маски. Для этого заберем один бит хостовой части в пользу сетевой, получаем 11111111.11111111.11111111.10000000. На выходе у нас две подсети – 192.168.1.0 /25 и 192.168.1.128 /25. (0 и 128 – значения, которые может принять первый бит четвертого октета, 0 и 1 соответственно).

Теперь рассмотрим, как разделить первоначальную сеть на четыре подсети. Для этого отдаем первые два бита из последнего октета в пользу сети:

11111111.11111111.11111111.00000000 = 192.168.1.0
11111111.11111111.11111111.01000000 = 192.168.1.64
11111111.11111111.11111111.10000000 = 192.168.1.128
11111111.11111111.11111111.11000000 = 192.168.1.192

Для чего используется маска подсети?

Деление больших сетей на маленькие используется администраторами для упрощения работы с сетевой инфраструктурой. Использование ограничений для различных департаментов компании удобно реализовывать на группу ПК, нежели отдельно на каждую машину. Кроме того, наличие подсетей уменьшает домены широковещательных рассылок, снижая нагрузку на коммутаторы.

Если два устройства относятся к одной подсети, то общение между ними будет осуществляться напрямую, минуя маршрутизатор. Для того, что бы отправить пакет в другую подсеть, устройство направляет его на свой шлюз по умолчанию, которым является физический или виртуальный интерфейс устройства третьего уровня (L3). Там сверяется адрес получателя с таблицей маршрутизации, и пакет направляется дальше.

Когда на маршрутизатор попадает очередной пакет, он проверяет сеть получателя, чтобы найти совпадение в своей таблице маршрутизации. Если совпадение есть, то пакет перенаправляется в нужный интерфейс, если совпадение отсутствует, то используется маршрут по умолчанию. В случае, когда поддержка бесклассовой маршрутизации не настроена, а пакет не относится к какой-либо сети в таблице маршрутизации, то он будет отброшен.

Например, пакет из сети 192.168.10.0 попадает на роутер, в таблице маршрутизации имеется два маршрута: к сетям 192.168.1.0 и 192.168.2.0, а так же маршрут по умолчанию 0.0.0.0 0.0.0.0. В такой ситуации пакет будет отброшен, так как сеть 192.168.10.0 относится к классу С, а маршрут к такой сети в таблице не существует.

В случае, когда используется бесклассовая маршрутизация, пакет будет отправлен на шлюз по умолчанию – 0.0.0.0 0.0.0.0.

Стоит учесть, что при использовании бесклассовой адресации само понятие «класс» пропадает. Нельзя сказать, что адрес 192.168.1.1 /24 относится к классу С или адрес 10.1.1.1 /24 относится к классу А. Классы были нужны для определения границ сети до тех пор, пока не использовалась маска сети.

Как узнать маску подсети? Маска подсети: расчет по IP

Вопрос о том, как узнать маску подсети, может возникать у начинающих системных администраторов и простых людей, которые решили разобраться с вычислительными сетями. В контексте администрирования маски могут быть использованы для разделения сетей на более мелкие и помогают разобраться с неполадками соединения.

Умение вычислить значение маски TCP/IP может быть использовано при подключении нового хоста в сеть и реорганизации корпоративной сетки. Изучение этой проблемы следует начать с понимания того, что она собой представляет и для каких целей используется.

Битовая маска

Маска подсети может называться битовой маской, что является 32-битным значением, которое указывает на одну часть IP, относящуюся к адресации сетевого интерфейса, и на вторую часть, относящуюся к адресации подсетей. Обычно её значение отображается в десятичном виде, в формате ХХХ.ХХХ.ХХХ.ХХХ.

Это определение приближено к профессиональному сленгу и может показаться непонятным. Разобраться с тем, что это такое, поможет конкретный пример.

Предположим, что у нас есть какая-то сеть, в которой присутствует компьютер. В свойствах подключения видно, что его сетевому интерфейсу присвоен IP-адрес и маска подсети.

Далее оба значения приводятся в двоичный вид и вычисляются следующие последовательности:

Теперь надо последовательно умножить каждый разряд IP-адреса в двоичном виде на разряд маски в двоичном виде и в результате будет получено значение,

которое при переводе в десятичный вид будет выглядеть, как

Умножая адрес IP на инвертированное значение маски, получаем последовательность

Возвращая в десятичный вид, получается цифра 199, соответствующая адресу интерфейса хоста.

Сравнив первый и второй результаты, можно сказать, что цифры IP-адреса, которые соотносятся с единицами маски, указывают на адрес подсети. Цифры IP-адреса, соотносящиеся с нулями маски, образуют адрес компьютера в этой подсети.

В итоге маска подсети помогла выяснить по IP, что наш компьютер находится в подсети 192.168.0.0 и имеет в ней адрес 199. Возвращаясь к определению выше, она показала, какая часть IP указывает на подсетку, а какая на адрес хоста.

Как найти маску подсети по классу IP-сети

Совокупность всех IPv4-адресов делится на классы по диапазонам адресов. Всего существует пять, из которых используются A, B, C, D- адреса заложены под мультикасты, и E — зарезервированы на будущее.

Для определения класса адреса необходимо опять перевести его в двоичный вид и посмотреть начало последовательности битов:

Возвращаясь к примеру, который был выше, как узнать маску подсети в нем:

IP-адрес в двоичном виде начинается на 110, значит, он принадлежит к классу C. Ещё один способ, как узнать маску подсети, это запомнить диапазоны принадлежащие классам.

Как узнать маску по префиксу

Для краткости маску можно записывать в виде префикса, который означает количество бит порции сети. Эта система обозначения принята с приходом бесклассовой междоменной маршрутизации (Classless Inter-Doma-in Routing, или CIDR, «сайдр»). Она избавляет от классов, а для идентификации сети может использоваться разное число битов IP. Узнать маску подсети в десятичном и двоичном виде по префиксу проще всего по таблице.

Как рассчитать маску по префиксу CIDR

Привести маску из префикса в десятичный вид просто. Известно, что маска подсети имеет 32 бита, при этом единицы в начале, а нули в конце. Следовательно, нужно:

Последним действием получаем маску в десятичном виде.

Как привести маску подсети из десятичного вида в короткий префикс

Написание маски сети в виде префикса экономит время и место в тексте. Кроме того, это стандартизированное международное отображение и сейчас используется чаще, чем десятичное. Для этого требуется:

Таким образом можно рассчитать префикс CIDR.

Как определить маску подсети с помощью адреса сети и маски сети

Подобное задание часто всплывает на собеседованиях и тестовых заданиях. И также навык пригодится при реорганизации сети предприятия или делении крупной сетки на более мелкие подсети.

Для наглядности стоит вернуться к примеру, который разбирается с первого абзаца.

С помощью адреса 192.168.0.199 и маски сети 255.255.255.0 уже вычислен адрес самой сети, который имеет вид 192.168.0.0. Здесь для использования присутствует 256 адресов. Из них 2 адреса автоматически резервируются:

. 0 — адрес сети и не может быть использован.

Остаётся для раздачи хостам всего 254 адреса. Стоит отметить, что в многоранговых сетях еще один адрес резервируется для роутинга, это может быть . 1 (или любой другой).

Разбирая все по порядку, приведём этот пример в общий вид, применяемый к любой сети.

Число допустимых узлов всегда ограничено. Если перевести маску сети в двоичный вид, то, как уже известно, единицы указывают на адрес подсети, нули — на адрес компьютера.

Бит может возвращать только два значения, два бита — четыре, три бита — восемь и так далее. Выходит, что n-бит возвращают 2^n значения. Исходя из всего, что сказано выше, получается вывод: число хостов (N) в сети вычисляется формулой N = (2^r)—2, в которой r-количество нулей в двоичном виде маски.

Возвращаясь к нашему примеру, производим расчёт:

Получаются те же 254 адреса для раздачи интерфейсам хостов в сети.

Предположим, что предприятию требуется создать подразделение и собрать 20 рабочих компьютеров в подсеть. Рассчитать маску подсети можно следующим образом.

Берём 20 IP и прибавляем к ним 2 адреса, которые будут зарезервированы. Всего требуется 22, самая близкая степень 2 — это 32. В двоичном виде 10 0000. Поскольку сеть, в которой проводится деление, относится к классу С, то маска подсети будет иметь вид:

Читать еще:  Ecosys m2535dn настройка сканирования в папку

Максимально в полученной подсети раздать интерфейсам хостов можно 30 адресов.

Как рассчитать маску подсети. Побитный сдвиг

Разбираемся дальше. Маска подсети помогает разбивать крупные сети на более мелкие. Первым делом предопределяется, на какое количество подсетей нужно разбить сеть и сколько максимально хостов в них должно быть.

Предположим, требуется разбить сеть 192.1.1.0 на 6 подсетей, в самой большой планируется разместить максимум 20 узлов. Исходя из этого, производится расчёт.

Определить класс разбиваемой сети. Для примера предложена сеть класса С, маска, используемая по умолчанию 255.255.255.0 или /24.

Выяснить, какое количество бит требуется для шести подсетей. Для этого число сетей округляется до ближайшей степени двойки, это 8. Получается, что требуется 3 бита, так как 8 = 2^3.

Представить маску по умолчанию в двоичный вид для наглядности:

Для создания 6 подсетей требуется забрать 3 бита из октета адреса хоста. К 24 битам адреса сети прибавляется еще 3. В итоге 24+3 = 27.

Остаётся перевести маску в десятичный вид. Последний октет 11100000 — это 224. Получается, маска имеет вид

Либо, обращаясь к CIDR, посчитать количество битов по единицам — 27, и посмотреть значение префикса.

Пользуясь тремя битами и с помощью маски разбиваем подсети. В последнем октете проставляем единицы. Для наглядности это можно сделать в двоичном виде:

Посчитать адреса подсетей можно и без двоичного представления, здесь сделано для наглядного отображения того, почему получаются именно эти адреса, а не другие.

Таким образом можно создать 8 подсетей, но в задании требуется только 6, поэтому остановимся на них.

Времена, когда подобные расчёты проводились вручную, далеко позади. Информация о том, как узнать маску подсети, преподаётся в ВУЗах и на различных курсах. Как правило, её старательно пытаются изучить студенты и профессионалы, которые хотят пройти сертификацию.

Сегодня для облегчения работы системных администраторов и сетевых инженеров существует множество различных калькуляторов. Эти системы могут провести любой расчёт за несколько секунд. Однако прибегать к помощи программ при небольшом объёме данных неинтересно. Иногда проще и быстрее разбить сеть в уме, чем искать нужный ресурс.

Понимание того, как производится расчёт маски подсети, необходимо специалисту, даже если он никогда на практике не будет его применять.

ИТ База знаний

Полезно

— Узнать IP — адрес компьютера в интернете

— Онлайн генератор устойчивых паролей

— Онлайн калькулятор подсетей

— Калькулятор инсталляции IP — АТС Asterisk

— Руководство администратора FreePBX на русском языке

— Руководство администратора Cisco UCM/CME на русском языке

— Руководство администратора по Linux/Unix

Навигация

Серверные решения

Телефония

FreePBX и Asterisk

Настройка программных телефонов

Корпоративные сети

Протоколы и стандарты

Популярное и похожее

Настройка Static Route Tracking с помощью IP SLA

Простой SSH туннель с помощью Putty

Тонкое искусство разбиения вашей сети на подсети

Маршрутизатор. Коммутатор. Хаб. Что это и в чем разница?

Лучшие бесплатные приложения для видеоконференций

Типы SSL – сертификатов

Базовая настройка коммутатора Juniper

Digium G400F

Разбиение сети на подсети: VLSM

Variable Length Subnet Mask

11 минут чтения

Допустим нам нужно отправить почтой посылку куда-то в Лондон. Что мы делаем? Идем в почту, берём специальный бланк и заполняем соответствующие поля. Отправитель Вася Пупкин, адрес: ул. Тверская, дом 40, кв. 36., Москва, Россия. Кому: Шерлок Холмс, Baker Street 221B, London, United Kingdom. То есть мы отправили посылку конкретному лицу, проживающему по конкретному адресу. Как и в реальном мире, в мире информационных технологий тоже есть своя адресация. В данном случае получателем выступает компьютер, за которым закреплён соответствующий IP адрес. IP aдрес это уникальный идентификатор устройства, подключённого к локальной сети или интернету.

Видео про IP — адрес

  • На данный момент существуют две версии IP адресов: IP версии 4 (IPv4) и IP версии 6 (IPv6). Смысл создания новой версии заключается в том, что IP адреса в 4-ой версии уже исчерпаны. А новые устройства в сети появляются с огромной скоростью и им всем нужно выделать свой уникальный адрес.

    IPv4 представляет собой 32-битное двоичное число. Удобной формой записи IP-адреса (IPv4) является запись в виде четырёх десятичных чисел (от 0 до 255), разделённых точками, например, 192.168.0.1. Но так как компьютеры понимают только двоичную систему исчисления, то указанный адрес преобразуют в двоичную форму — 11000000 10101000 00000000 00000000.

    Длина же IPv6 адресов равна 128-битам. IPv6 адрес представляется в виде строки шестнадцатеричных цифр, разделенной двоеточиями на восемь групп, по 4 шестнадцатеричных цифрр в каждой. Например: 2003:00af:café:3daf:1000:edaf:1001:afad. Каждая группа равна 16 битам в двоичном представлении.

    IP адреса принято делить на публичные и приватные. Публичный адрес это адрес, который виден в Интернете. Все сайты в глобальной сети имеют публичный или «белый» IP адрес. Для merionet.ru он равен 212.193.249.136. Да и ваш компьютер тоже имеет публичный адрес, который можете просмотреть либо на роутере, либо на специальных сайтах, например 2ip.ru. Но в вашем случае под одним IP адресом в Интернет могут выходить 10, 50, 100 пользователей из вашей же сети. Потому что на самом деле это адрес не конкретного компьютера в сети, а маршрутизатора, через который вы выходите в сеть. Публичные адреса должны быть уникальны в пределах всего Интернета.

    Приватные же адреса это такой тип адресов, которые используют в пределах одной локальной сети и не маршрутизируются в Интернет. Существуют следующие диапазоны приватных IP адресов: 10.0.0.0-10.255.255.255, 172.16.0.0-172.31.255.255, 192.168.0.0-192.168.255.255. Посмотреть свой локальный приватный адрес можете либо в свойствах сетевого адаптера, либо в командной строке набрав команду ipconfig.

    В начале зарождения Интернета IP адреса было принято делить на классы:

    При этом адрес 0.0.0.0 зарезервирован, он назначается хосту, когда он только что подключен к сети и не имеет IP адреса. Если в сети имеется DHCP сервер, то хост в качестве адреса источника отправляет адрес 0.0.0.0. Адрес 255.255.255.255 это широковещательный адрес. А адреса начинающиеся на 127 зарезервированы для так называемой loopback адресации.

    Адреса класса D зарезервированы для мультикаст соединений, адреса класса E для исследований (не только крысы страдают от исследований).

    IP адрес хоста имеет две части адрес сети и адрес узла. Где адрес сети, а где адрес узла — определяется маской сети. Маска сети это 32-битное число, где подряд идущие биты всегда равны 1. На самом деле каждое десятичное число IP адреса — это не что иное, как сумма степеней числа 2. Например, 192 это 1100000. Чтобы получить это значение переводим десятичное число в двоичное. Хотя это азы информатики, но подойдет любой калькулятор, даже встроенный в Windows:

    А теперь посмотрим как мы получаем 192 из суммы степеней двойки:

    1 * 2 7 +1*2 6 +0*2 5 +0*2 4 +0*2 3 +0*2 7 +0*2 1 +0*2 0 = 1*2 7 +1*2 6 = 128 + 64 = 192. И так каждый октет может включать в себя следующие числа:

    128 64 32 16 8 4 2 1. Если в IP адресе есть место одной из указанных чисел, то в двоичном представлении на месте этого числа подставляется 1, если нет 0. В маске сети все подряд идущие биты должны быть равны 1.

    Принадлежность адреса классу определяется по первым битам. Для сетей класса A первый бит всегда равен 0, для класса B 10, для класса С 110.

    При классовой адресации за каждым классом закреплена своя маска подсети. Для класса А это 255.0.0.0, класса B 255.255.0.0, а для класса C 255.255.255.0.

    Но со временем стало ясно, что классовая адресация не оптимально использует существующие адреса. Поэтому перешли на бесклассовую адресацию, так называемую Classless Inter-Domain Routing (CIDR), где любой подсети можно задать любую маску. Отличную от стандартной. При это, маску подсети можно увеличивать, но никак не уменьшать. Наверное не раз встречали адреса типа 10.10.121.25 255.255.255.0. Этот адрес по сути является адресом класса А, но маска относится к классу C.

    Но даже в случае бесклассовой адресации наблюдается перерасход IP адресов. В маленьких сетях, где всего один отдел с 40-50 компьютерами это не очень заметно. Но в больших сетях, где нужно каждому отделу выделить свой диапазон IP адресов этот вопрос стоит боком. Например, бухгалтерии вы выделили сеть с адресом 192.168.1.0/24, а там всего 25 хостов. В указанной сети же 254 адресов. Значит 229 адреса остаются не используемыми.

    На самом деле здесь 256 адресов, но первый 192.168.1.0 является адресом сети, а последний 192.168.1.255 широковещательнымадресом. Итого в распоряжении администратора всего 254 адреса. Существует формула расчета количества хостов в указанной сети. Выглядит она следующим образом:

    Где H число хостов, n число бит отведенных под номер хоста. Например, 192.168.1.0 маска 255.255.255.0. Здесь первый 24 бит определяют номер сети, а оставшиеся 8 бит номер хоста. Исходя из этого, H=2 8 -2 = 254.

    Тут и вспоминаем про деление сетей на подсети. Кроме экономии адресного пространства, сабнеттинг дает еще и дополнительную безопасность. Трафик между сетями с разной маской не ходит, а значит пользователи одной подсети не смогут прослушать трафик пользователей в другой. Это еще и упрощает управление разрешениями в сети, так как можно назначать списки доступа и тем самым ограничивать доступ пользователей в критически важные сегменты сети.

    С другой стороны, сегментирование сети позволяет увеличивать количество широковещательных доменов, уменьшая при этом сам широковещательный трафик.

    В сегментировании сети используется такой подход как маска подсети с переменной длиной VLSM (Variable Length Subnet Mask). Суть состоит в том, что вам выделяют диапазон IP адресов, и вы должны распределить их так, чтобы никто не мог проснифить трафик другого и всем досталось хотя бы по одному адресу.

    Выделением блоков IP адресов занимается организация IANA (Internet Assigned Numbers Authority ). Она делегирует права региональным регистраторам, которые в свою очередь выделяют блоки адресов национальным. Например, региональным регистратором для Европы является RIPE. А последние в свою очередь делят адреса, имеющиеся у них, между провайдерами.

    Например, нам выделили адрес 192.168.25.0 с маской подсети 255.255.255.0.

    Маску подсети можно указывать сокращенно: 192.168.25.0/24. 24 это число единиц в маске.

    Нам как администраторам предприятия предстоит разделить их между четырьмя отделами, в которых по 50 хостов. Начинаем вычисления. Нам нужно 5 * 50 = 250 уникальных адресов. Но основная задача, пользователи должны быть в разных подсетях. Значит необходимо четыре подсети. Для определения количества подсетей в сети есть специальная формула:

    Где N число подсетей, а n число бит заимствованных из хостовой части IP адреса. В нашем случае мы пока не позаимствовали ничего значить подсеть всего одна: 2 0 = 1. Нам же нужно четыре подсети. Простая математика нам подсказывает, что должны позаимствовать минимум 2 бита: 2 2 = 4. Итак, маска у нас становиться 255.255.255.192 или /26. Остальные 6 битов нам дают количество адресов равных 64 для каждой подсети, из которых доступны 62 адреса, что полностью покрывает нужду наших подсетей:

    Маска IP-адреса.

    Вопрос о том, что такое *маска IP-адреса*, из чего она состоит и как используется, приходится слышать довольно часто. Самое неприятное, что в Интернете есть много непроверенной, устаревшей и не соответствующей действительности информации. Поэтому постараюсь ответить максимально подробно.

    Из скольки бит состоит IP-адрес?

    Для вас это простой вопрос, на который вы отвечаете не задумываясь? И ответите правильно, даже если вас разбудят среди ночи? Значит, вы профессиональный айтишник — сетевой инженер или, например, администратор. Если вы засомневались, не беда. Дочитав статью до конца, вы наверняка узнаете много интересного.

    Для удобства информация разделена на шесть порций, или небольших глав. Есть мудрая поговорка, что нельзя съесть слона целиком, но можно съесть его по частям. Поехали.

    Маска ip адреса общие понятия.

    IP-адрес (v4) состоит из 32-бит. Это можно взять в рамочку, как в школьных учебниках. Желательно запомнить и про IPv6 тоже: 128 бит.

    Теоретически IPv4-адресов может быть: 2 32 = 2 10 *2 10 *2 10 *2 2 = 1024*1024*1024*4 ≈ 1000*1000*1000*4 = 4 млрд.

    Всего 4 миллиарда. Но дальше будет рассмотрено, сколько из них не используется, грубо говоря, съедается.

    Как записывается IPv4-адрес? Он состоит из четырёх октетов и записывается в десятичном представлении без начальных нулей, октеты разделяются точками: например, «192.168.11.10».

    Если что, октет — это ровно то же самое, что байт. Но если вы скажете «октет» в среде профессионалов, они вас сразу зауважают и вам легче будет сойти за своего.

    В заголовке IP-пакета есть поля «source IP» и «destination IP». Это адреса источника: кто посылает и назначения: кому отправлено. Почти как на почтовом конверте. Внутри пакетов у IP-адресов нет никаких масок, и разделителей между октетами тоже нет. Просто 32 бита для адреса назначения и еще 32 для адреса источника.

    Однако, когда IP-адрес присваивается интерфейсу — ещё говорят, сетевому адаптеру — компьютера или маршрутизатора, то, кроме самого адреса этого устройства, ему присваивают еще и маску подсети.

    Можно повторить, это важно: *маска IP-адреса* НЕ передается в заголовках IP-пакетов.

    Читать еще:  Установка apk через recovery

    Компьютерам маска подсети нужна для определения границ. угадайте, чего именно. подсети. Это нужно, чтобы каждый мог определить, кто находится с ним в одной (под)сети, а кто — за ее пределами. Вообще-то можно говорить просто «сети», часто этот термин используют именно в значении «IP-подсеть». Внутри одной сети компьютеры обмениваются пакетами напрямую, но если нужно послать пакет в другую сеть, шлют их шлюзу по умолчанию (это третий параметр, настраиваемый в сетевых свойствах). Вот как это происходит.

    Маска подсети — это тоже 32-бита. Но, в отличие от IP-адреса, нули и единицы в ней не могут чередоваться. Всегда сначала идут единицы, потом нули.

    • Не может быть маски 120.22.123.12=01111000.00010110.01111011.00001100.
    • Но может быть маска 255.255.248.0=11111111.11111111.11111000.00000000.

    Сначала N единиц, потом 32-N нулей. Легко догадаться, что такая форма записи избыточна. Вполне хватило бы числа N, называемого длиной маски. Так и делают: пишут 192.168.11.10/21 вместо 192.168.11.10 255.255.248.0. Обе формы имеют один и тот же смысл, но первая заметно удобнее.

    Чтобы определить границы подсети, компьютер делает побитовое умножение (логическое И) между IP-адресом и маской, а на выходе получает адрес с обнулёнными битами в позициях нулей маски.

    Рассмотрим пример 192.168.11.10/21:

    Маска ip адреса, адрес подсети.

    Владение двоичной арифметикой обязательно для любого профессионального администратора. Нужно уметь безошибочно переводить IP-адреса из десятичной формы в двоичную и обратно. Это может делаться в уме или на бумажке. Обходиться в таких вопросах без калькулятора — это требование суровой действительности.

    Адрес 192.168.8.0 называется адресом подсети. Обратите внимание на все обнулённые биты на позициях, которые соответствуют нулям в маске. Адрес подсети обычно нельзя использовать в качестве адреса для интерфейса того или иного хоста.

    Если, наоборот эти же биты превратить в единицы, то получится адрес 192.168.15.255. Такой адрес называется направленным бродкастом (то есть широковещательным) для данной сети. Сейчас особого смысла в нём нет, но когда-то раньше считалось, что все хосты в подсети должны на него откликаться. Сейчас это неактуально, однако этот адрес тоже (обычно) нельзя использовать как адрес хоста.

    Получается, из каждой подсети выбрасывается два адреса. Остальные адреса в диапазоне от 192.168.8.1 до 192.168.15.254 включительно — это полноправные адреса хостов внутри подсети 192.168.8.0/21. Их, все без исключения, можно использовать для назначения на компьютерах.

    Зрительно адрес как бы делится на две части. Та часть адреса, которой соответствуют единицы в маске, является идентификатором подсети — или адресом подсети. Обычно её называют «префикс».

    Вторая часть, которой соответствуют нули в маске — это идентификатор хоста внутри подсети.

    Очень часто встречается адрес подсети в таком виде:

    Когда маршрутизатор прокладывает в сети маршруты для передачи трафика, он оперирует именно префиксами.

    Как ни странно, он не интересуется местонахождением хостов внутри подсетей. Об этом знает только шлюз по умолчанию конкретной подсети (технологии канального уровня могут отличаться).

    Главное: в отрыве от подсети адрес хоста не используется совсем.

    Длина маски подсети.

    Количество хостов в подсети определяется как 232-N-2, при этом N — длина маски.

    Логичный вывод: чем длиннее маска, тем меньше в ней хостов.

    Ещё один полезный логический вывод: максимальной длиной маски для подсети с хостами будет N=30.

    Именно сети /30 чаще всего используют для адресации на point-to-point-линках между маршрутизаторами.

    Большинство маршрутизаторов сегодня отлично работает и с масками /31, используя адрес подсети (нуль в однобитовой хостовой части) и бродкаст (единица) в качестве адресов интерфейсов. Однако администраторы и сетевые инженеры иногда просто боятся такого подхода, согласно проверенному принципу «мало ли что».

    А вот *маска IP-адреса* /32 используется гораздо чаще. С ней удобно работать, во-первых, при адресации так называемых loopback-интерфейсов. Во-вторых, практически невозможно ничего напутать: /32 — это подсеть, состоящая из одного хоста, то есть по сути никакая и не сеть.

    Если администратору сети приходится оперировать не группами хостов, а индивидуальными машинами, то с каждым разом сеть становится всё менее масштабируемой, в ней резко увеличивается вероятность всяческого бардака и никому не понятных правил. За исключением, наверное, только написания файрвольных правил для серверов: вот там специфичность ценится и котируется.

    Другими словами, с пользователями лучше обращаться не индивидуально, а массово, целыми подсетями, иначе сеть быстро станет неуправляемой.

    Интерфейс, на котором настроен IP-адрес, иногда могут называть IP-интерфейсом или L3-интерфейсом («эл-три», тема «модель OSI»).

    До того как послать IP-пакет, компьютер определяет, попадёт ли адрес назначения в «свою» подсеть. Если ответ положительный, то он шлёт пакет «напрямую», если отрицательный — направляет его шлюзу по умолчанию, то есть маршрутизатору.

    Адресом шлюза по умолчанию обычно назначают первый адрес хоста в подсети, хотя это и вовсе не обязательно. В нашем примере адрес шлюза 192.168.8.1 — для красоты.

    Маршрутизатор и шлюз подсети.

    Наверное, лучше повторить: шлюз и маршрутизатор — это одно и то же!

    Из того, о чём говорилось только что, следует достаточно ясный вывод. Маршрутизатор с адресом интерфейса 192.168.8.1 ничего не знает о трафике, передаваемом, например, между хостами 192.168.8.5 и 192.168.8.7.

    У начинающих администраторов одна из самых типичных ошибок — желание заблокировать или как-то иначе проконтролировать с помощью шлюза трафик между хостами в одной подсети. На самом деле, чтобы трафик проходил через маршрутизатор, адресат и отправитель должны находиться в разных подсетях.

    А отсюда следует, что в сети даже самого маленького предприятия должно быть несколько IP-подсетей (больше двух) и маршрутизатор (точнее, файрвол, но сейчас можно считать эти слова синонимами), который маршрутизирует и контролирует трафик между подсетями.

    Важный следующий шаг: разбиение подсетей на более мелкие подсети.

    Сеть из нашего примера 192.168.8.0/21 можно разбить на две подсети /22, четыре подсети /23, восемь /24 и так далее. Общее правило, как можно догадаться, такое:

    при этом K — количество подсетей с длиной маски Y, которые умещаются в подсеть с длиной маски X.

    Агрегация.

    Любой приличный айтишник, включая сетевого администратора, должен знать наизусть степени двойки от нуля до 16. Просто для того, чтобы не стыдно было получать зарплату.

    Есть такой процесс, называемый агрегацией. Это значит объединение мелких префиксов — с длинной маской подсети, в которых мало хостов — в крупные, с короткой маской подсети, в которых много хостов. Второе название этого же процесса — суммаризация. Запомните, не суммирование!

    Агрегация необходима, чтобы минимизировать количество информации, которую использует маршрутизатор для поиска пути передачи в сети.

    Пример: провайдеры выдают клиентам множество маленьких блоков по типу /29. При этом весь остальной Интернет об этом даже не подозревает. За каждым провайдером закреплены префиксы намного крупнее — от /19 и выше. Благодаря такой системе в Глобальную таблицу Интернет-маршрутизации заносится намного меньше записей: их число сократилось на несколько порядков.

    Составление адресного плана.

    Мы помним, что *маска IP-адреса* бывает разной длины. Чем больше длина маски, тем меньше хостов может быть в подсети. Одновременно увеличивается доля «съеденных» адресов на адреса подсети, шлюза по умолчанию и направленного бродкаста.

    Пример. Подсеть с маской /29 (232-29 = 8 комбинаций). Здесь остаётся всего пять доступных для реального использования адресов, в процентах это будет 62,5%. Легко поставить себя на место провайдера, которому необходимо выдать тысячам корпоративных клиентов блоки /29. Для него грамотная разбивка IP-пространства на подсети жизненно необходима.

    Эту науку ещё называют составлением адресного плана. Каждый, кто разбивает IP-пространство на подсети, должен уметь не только видеть и учитывать множество факторов, но и искать разумные компромиссы.

    Если используется большой диапазон адресов, удобно работать с масками, совпадающими по длине с границами октетов.

    Пример. Адреса из блоков частного сектора: 10.0.0.0/8, 172.16.0.0/12 и 192.168.0.0/16.

    *Маска IP-адреса*: /8, /16, /24 или, соответственно, по-другому 255.0.0.0, 255.255.0.0, 255.255.255.0.

    Такой подход серьёзно облегчает работу мозга и снижает нагрузку на калькулятор: не надо постоянно переходить на двоичную систему и биты. Ничего плохого в этом методе нет. Кроме одного: возможности чересчур сильно расслабиться. и наделать ошибок.

    Итоги по маске IP-адреса.

    Само понятие «классы адресов», о котором нет-нет да и приходится читать/слышать, давно устарело. Уже больше 20 лет назад выяснилось, что длина префикса может быть любой. Если же раздавать адреса блоками по /8, то никакого Интернета не получится. Итак: «классов адресов» не существует!

    Другой, мягко говоря, странный термин. Иногда говорят «сеть класса такого-то» по отношению к подсети с той или иной длиной маски. Например, «сеть класса C» про 10.1.2.0/24. или что-то подобное. Знайте, так никогда не скажет серьёзный специалист. Класс сети, когда он ещё существовал, не имел отношения к длине маски и определялся совсем другими факторами — а именно комбинациями битов в адресе. Если классовая адресация использовалась, то длина масок тоже была строго регламентирована. Каждому классу соответствовали маски только строго определённой длины. Хотя бы поэтому подсеть 10.1.2.0/24, как в примере, никогда не принадлежала и не могла принадлежать к классу C.

    Но лучше об этом не вспоминать. Важно только вот что. «Под одной крышей» в RFC3330 собраны все существующие глобальные конвенции, которые посвящены специальным значениям разнообразных блоков адресов.

    В них блоки 10/8, 172.16/12 и 192.168/16 (написание сокращённое) определяются как диапазоны для частного использования, запрещённые к маршрутизации в интернете. Другими словами, каждый может использовать их по своему усмотрению, в частных целях.

    Пусть вас не удивляет способ написания префиксов, когда полностью отбрасывается хостовая часть: он широко применяется и не вызывает разночтений или недоразумений.

    Далее, блок 224.0.0.0/4 зарезервирован для мультикаста, и так далее. Но конвенции — это не совсем законы в полном юридическом смысле слова. Их цель — сделать проще и легче административное взаимодействие. Конвенции крайне не рекомендуется нарушать, но до поры до времени никем не запрещено использовать любые адреса для любых целей. Ровно до того момента, пока вы не встречаетесь с внешним миром

    ИТ База знаний

    Полезно

    — Узнать IP — адрес компьютера в интернете

    — Онлайн генератор устойчивых паролей

    — Онлайн калькулятор подсетей

    — Калькулятор инсталляции IP — АТС Asterisk

    — Руководство администратора FreePBX на русском языке

    — Руководство администратора Cisco UCM/CME на русском языке

    — Руководство администратора по Linux/Unix

    Навигация

    Серверные решения

    Телефония

    FreePBX и Asterisk

    Настройка программных телефонов

    Корпоративные сети

    Протоколы и стандарты

    Популярное и похожее

    Настройка Static Route Tracking с помощью IP SLA

    Простой SSH туннель с помощью Putty

    Тонкое искусство разбиения вашей сети на подсети

    Как провести радиопланирование с Ekahau

    Настройка Static Route Tracking с помощью IP SLA

    Тонкое искусство разбиения вашей сети на подсети

    Как пользоваться Cisco AnyConnect

    Panasonic KX-HDV230RUB

    Разбиение сети на подсети: VLSM

    Variable Length Subnet Mask

    11 минут чтения

    Допустим нам нужно отправить почтой посылку куда-то в Лондон. Что мы делаем? Идем в почту, берём специальный бланк и заполняем соответствующие поля. Отправитель Вася Пупкин, адрес: ул. Тверская, дом 40, кв. 36., Москва, Россия. Кому: Шерлок Холмс, Baker Street 221B, London, United Kingdom. То есть мы отправили посылку конкретному лицу, проживающему по конкретному адресу. Как и в реальном мире, в мире информационных технологий тоже есть своя адресация. В данном случае получателем выступает компьютер, за которым закреплён соответствующий IP адрес. IP aдрес это уникальный идентификатор устройства, подключённого к локальной сети или интернету.

    Видео про IP — адрес

  • На данный момент существуют две версии IP адресов: IP версии 4 (IPv4) и IP версии 6 (IPv6). Смысл создания новой версии заключается в том, что IP адреса в 4-ой версии уже исчерпаны. А новые устройства в сети появляются с огромной скоростью и им всем нужно выделать свой уникальный адрес.

    IPv4 представляет собой 32-битное двоичное число. Удобной формой записи IP-адреса (IPv4) является запись в виде четырёх десятичных чисел (от 0 до 255), разделённых точками, например, 192.168.0.1. Но так как компьютеры понимают только двоичную систему исчисления, то указанный адрес преобразуют в двоичную форму — 11000000 10101000 00000000 00000000.

    Длина же IPv6 адресов равна 128-битам. IPv6 адрес представляется в виде строки шестнадцатеричных цифр, разделенной двоеточиями на восемь групп, по 4 шестнадцатеричных цифрр в каждой. Например: 2003:00af:café:3daf:1000:edaf:1001:afad. Каждая группа равна 16 битам в двоичном представлении.

    IP адреса принято делить на публичные и приватные. Публичный адрес это адрес, который виден в Интернете. Все сайты в глобальной сети имеют публичный или «белый» IP адрес. Для merionet.ru он равен 212.193.249.136. Да и ваш компьютер тоже имеет публичный адрес, который можете просмотреть либо на роутере, либо на специальных сайтах, например 2ip.ru. Но в вашем случае под одним IP адресом в Интернет могут выходить 10, 50, 100 пользователей из вашей же сети. Потому что на самом деле это адрес не конкретного компьютера в сети, а маршрутизатора, через который вы выходите в сеть. Публичные адреса должны быть уникальны в пределах всего Интернета.

    Читать еще:  Как исправить: Ваш компьютер необходимо восстановить. Код ошибки: 0xc0000225

    Приватные же адреса это такой тип адресов, которые используют в пределах одной локальной сети и не маршрутизируются в Интернет. Существуют следующие диапазоны приватных IP адресов: 10.0.0.0-10.255.255.255, 172.16.0.0-172.31.255.255, 192.168.0.0-192.168.255.255. Посмотреть свой локальный приватный адрес можете либо в свойствах сетевого адаптера, либо в командной строке набрав команду ipconfig.

    В начале зарождения Интернета IP адреса было принято делить на классы:

    При этом адрес 0.0.0.0 зарезервирован, он назначается хосту, когда он только что подключен к сети и не имеет IP адреса. Если в сети имеется DHCP сервер, то хост в качестве адреса источника отправляет адрес 0.0.0.0. Адрес 255.255.255.255 это широковещательный адрес. А адреса начинающиеся на 127 зарезервированы для так называемой loopback адресации.

    Адреса класса D зарезервированы для мультикаст соединений, адреса класса E для исследований (не только крысы страдают от исследований).

    IP адрес хоста имеет две части адрес сети и адрес узла. Где адрес сети, а где адрес узла — определяется маской сети. Маска сети это 32-битное число, где подряд идущие биты всегда равны 1. На самом деле каждое десятичное число IP адреса — это не что иное, как сумма степеней числа 2. Например, 192 это 1100000. Чтобы получить это значение переводим десятичное число в двоичное. Хотя это азы информатики, но подойдет любой калькулятор, даже встроенный в Windows:

    А теперь посмотрим как мы получаем 192 из суммы степеней двойки:

    1 * 2 7 +1*2 6 +0*2 5 +0*2 4 +0*2 3 +0*2 7 +0*2 1 +0*2 0 = 1*2 7 +1*2 6 = 128 + 64 = 192. И так каждый октет может включать в себя следующие числа:

    128 64 32 16 8 4 2 1. Если в IP адресе есть место одной из указанных чисел, то в двоичном представлении на месте этого числа подставляется 1, если нет 0. В маске сети все подряд идущие биты должны быть равны 1.

    Принадлежность адреса классу определяется по первым битам. Для сетей класса A первый бит всегда равен 0, для класса B 10, для класса С 110.

    При классовой адресации за каждым классом закреплена своя маска подсети. Для класса А это 255.0.0.0, класса B 255.255.0.0, а для класса C 255.255.255.0.

    Но со временем стало ясно, что классовая адресация не оптимально использует существующие адреса. Поэтому перешли на бесклассовую адресацию, так называемую Classless Inter-Domain Routing (CIDR), где любой подсети можно задать любую маску. Отличную от стандартной. При это, маску подсети можно увеличивать, но никак не уменьшать. Наверное не раз встречали адреса типа 10.10.121.25 255.255.255.0. Этот адрес по сути является адресом класса А, но маска относится к классу C.

    Но даже в случае бесклассовой адресации наблюдается перерасход IP адресов. В маленьких сетях, где всего один отдел с 40-50 компьютерами это не очень заметно. Но в больших сетях, где нужно каждому отделу выделить свой диапазон IP адресов этот вопрос стоит боком. Например, бухгалтерии вы выделили сеть с адресом 192.168.1.0/24, а там всего 25 хостов. В указанной сети же 254 адресов. Значит 229 адреса остаются не используемыми.

    На самом деле здесь 256 адресов, но первый 192.168.1.0 является адресом сети, а последний 192.168.1.255 широковещательнымадресом. Итого в распоряжении администратора всего 254 адреса. Существует формула расчета количества хостов в указанной сети. Выглядит она следующим образом:

    Где H число хостов, n число бит отведенных под номер хоста. Например, 192.168.1.0 маска 255.255.255.0. Здесь первый 24 бит определяют номер сети, а оставшиеся 8 бит номер хоста. Исходя из этого, H=2 8 -2 = 254.

    Тут и вспоминаем про деление сетей на подсети. Кроме экономии адресного пространства, сабнеттинг дает еще и дополнительную безопасность. Трафик между сетями с разной маской не ходит, а значит пользователи одной подсети не смогут прослушать трафик пользователей в другой. Это еще и упрощает управление разрешениями в сети, так как можно назначать списки доступа и тем самым ограничивать доступ пользователей в критически важные сегменты сети.

    С другой стороны, сегментирование сети позволяет увеличивать количество широковещательных доменов, уменьшая при этом сам широковещательный трафик.

    В сегментировании сети используется такой подход как маска подсети с переменной длиной VLSM (Variable Length Subnet Mask). Суть состоит в том, что вам выделяют диапазон IP адресов, и вы должны распределить их так, чтобы никто не мог проснифить трафик другого и всем досталось хотя бы по одному адресу.

    Выделением блоков IP адресов занимается организация IANA (Internet Assigned Numbers Authority ). Она делегирует права региональным регистраторам, которые в свою очередь выделяют блоки адресов национальным. Например, региональным регистратором для Европы является RIPE. А последние в свою очередь делят адреса, имеющиеся у них, между провайдерами.

    Например, нам выделили адрес 192.168.25.0 с маской подсети 255.255.255.0.

    Маску подсети можно указывать сокращенно: 192.168.25.0/24. 24 это число единиц в маске.

    Нам как администраторам предприятия предстоит разделить их между четырьмя отделами, в которых по 50 хостов. Начинаем вычисления. Нам нужно 5 * 50 = 250 уникальных адресов. Но основная задача, пользователи должны быть в разных подсетях. Значит необходимо четыре подсети. Для определения количества подсетей в сети есть специальная формула:

    Где N число подсетей, а n число бит заимствованных из хостовой части IP адреса. В нашем случае мы пока не позаимствовали ничего значить подсеть всего одна: 2 0 = 1. Нам же нужно четыре подсети. Простая математика нам подсказывает, что должны позаимствовать минимум 2 бита: 2 2 = 4. Итак, маска у нас становиться 255.255.255.192 или /26. Остальные 6 битов нам дают количество адресов равных 64 для каждой подсети, из которых доступны 62 адреса, что полностью покрывает нужду наших подсетей:

    Маска подсети – как узнать: виды сетей

    Опубликовано admin в 18 декабря, 2019 18 декабря, 2019

    Что такое маска подсети.

    Чтобы понять, что такое маска подсети, сначала нужно узнать, что такое IP-адрес (Интернет-протокол). Каждое устройство, которое подключается к сети, нуждается в своем собственном уникальном идентификаторе, чтобы они могли взаимодействовать друг с другом. IP-адрес – это строка чисел, разделенных точками, например: 172.16.81.100.

    Маска подсети тоже является числом, и она определяет диапазон IP-адресов, которые может использовать сеть. С ее помощью сети могут делиться на небольшие подсети, которые подключаются к Интернету. Маска подсети будет обозначать эти подсети.

    Устройства, расположенные в одной подсети, могут взаимодействовать друг с другом. Если устройства одной подсети хотят обмениваться данными с другой, им потребуется маршрутизатор для маршрутизации коммутации между ними. Это можно использовать для разделения многочисленных сетей и, следовательно, для ограничения связи между ними.

    Задача маски подсети, если простыми словами, – скрыть сетевой элемент адреса. Виден только элемент хоста. Одна из наиболее распространенных масок класса C – 255.255.255.0.

    Каждый раздел адреса маски подсети может содержать любые числа от 0 до 255. Для 255.255.255.0 первые 3 раздела заполнены, что означает, что IP-адреса устройств в этой подсети должны совпадать с начальными 3 разделами. Последний раздел может быть любым числом от 0 до 255.

    Пример лучше всего объясняет это. Два IP-адреса 12.0.1.101 и 12.0.1.102 расположены в одной подсети, а номер 12.0.2.101 будет находиться уже в другой.

    С маской 255.255.255.0 существует 256 IP-адресов, но только 254 из них могут использоваться для хостов. Это связано с тем, что шлюз (обычно первый адрес – 0) и широковещательный адрес (обычно последний адрес – 255) зарезервированы.

    Почему подсеть так важна

    Одной из наиболее важных причин является безопасность. Когда вы находитесь в той же подсети, что и другие устройства, существует свободная связь, но устройства в других подсетях не смогут получить прямой доступ к вам.

    Хорошим примером этого является домашняя сеть. У вас есть маршрутизатор, который будет использовать подсеть для безопасности. Ваш провайдер выделит вам публичный статический IP-адрес. Этот номер будут видеть все веб-сайты и всё, к чему вы подключаетесь. Однако, если вы проверите идентификатор вашего компьютера, он, скорее всего, будет отличаться от общедоступного.

    Это связано с тем, что на домашней стороне маршрутизатора имеется подсеть, на которую нельзя войти извне. Входящий трафик проходит через маршрутизатор, который затем транслирует и направляет его на правильное устройство. Таким образом, все по-прежнему связано, но не подключено напрямую.

    Подсеть увеличит количество устройств, которые могут выходить в Интернет. В стандартной сети IPv4 доступно только около трех миллиардов адресов. Этого недостаточно, чтобы удовлетворить глобальный спрос на подключение.

    Таким образом, подсеть используется, чтобы позволить множеству устройств подключаться к Интернету с одним IP-адресом через маршрутизатор (как у вас дома или в офисе), и таким образом намного больше трех миллиардов устройств может иметь доступ к интернету.

    Типичная маска подсети для домашних сетей – 255.255.255.0. Это 24-битная маска, которая позволяет использовать до 256 уникальных номеров. Однако возможны «только» 254 хоста, которых должно быть достаточно для большинства квартир. Но в больших масштабах этого очень мало. Хорошо, что 255.255.255.0 можно изменить на что-то другое. Это увеличит сеть и пропускную способность хостов. Например, 255.255.0.0, который является 16-битной маской, может иметь 65 536 хостов.

    В чем разница между IP-адресом и маской

    Это кажется немного запутанным. Как узнать разницу между маской подсети и IP? Давайте использовать пример, чтобы устранить путаницу.

    Лучший способ сделать это – подумать об обычном адресе, таком как домашний или физический адрес вашей компании. Итак, допустим, что один из ваших друзей хочет отправить вам письмо. Он пишет ваш адрес на конверте, затем добавляет штамп и помещает в свой почтовый ящик.

    Почтовый работник получает письмо и, если адрес получателя является локальным, отправляет его прямо в ваш почтовый ящик. Если адрес находится в другом городе или поселке, письмо отправляется в центральное почтовое отделение, где работники его сортируют и отправляют туда, куда оно должно дойти. IP-адрес работает аналогичным образом.

    Итак, если ваш IP – 20.0.0.1, а маска подсети – 255.0.0.0, это означает, что адреса в диапазоне 20.x.x.x находятся в вашей локальной сети. Однако, если вы хотите отправить что-либо на IP-адрес за пределами вашей подсети, например, 30.0.0.1, вы не можете сделать это напрямую (по аналогии с почтой это будет в другом городе).

    В этом случае почта отправляет сообщение в местный центральный офис, а затем в местный центральный офис предполагаемого получателя. И только после этого почтовый работник доставляет его.

    Таким образом, IP-адрес – это номер, который имеет номер сети, номер подсети (это необязательно) и номер хоста. Номера сети и подсети используются при маршрутизации, а номер хоста является адресом хоста.

    Маска подсети численно определяет формат IP-адреса, где биты сети и подсети, которые формируют адрес, имеют значения битов маски 1, а компонент узла адреса использует значение бита маски 0.

    Виды сетей – что такое сеть класса A, класса B и C

    IP-адреса делятся на отдельные классы. Наиболее распространенными являются адреса классов A, B и C.

    Каждый из этих классов по умолчанию использует разные маски подсети, и вы можете легко определить класс IP-адреса по первому октету, который он использует.

    Класс А

    В сети класса A вы увидите маску по умолчанию 255.0.0.0. Это означает, что первый октет IP-адресов класса A будет находиться в диапазоне от 0 до 127. Пример IP-адреса класса A будет 12.48.24.9.

    Сети класса A имеют 8-битный префикс с максимальным битом, установленным на 0. Существует 7-битный номер сети, а номер хоста – 24-битный.

    С классом А существует максимум 126 сетей.

    Класс B

    В сети класса B вы увидите маску по умолчанию 255.255.0.0. Это означает, что первый октет IP-адресов класса B будет находиться между 128 и 191. Пример IP-адреса класса B будет 171.17.51.64.

    Сети класса B имеют 16-битный префикс с самым высоким битовым порядком. Номер сети – 14 бит, а номер хоста – 16 бит.

    Класс С

    В сети класса C вы увидите маску по умолчанию 255.255.255.0. Это означает, что первый октет IP-адресов класса C будет между 192 и 223. Примером IP-адреса класса C будет 194.166.124.133.

    Сети класса C имеют 24-битный префикс с наивысшим битовым порядком, установленным в 1-1-0. Номер сети 24 бит, а номер хоста 8 бит.

    Как узнать свою маску

    Это будет отличаться в зависимости от того, используете ли вы Windows, Mac или Linux.

    Откройте командную строку, выполнив поиск CMD

    Введите ipconfig и нажмите ввод

    Там будет строка с именем «Маска подсети», которая сообщит вам маску, а так же шлюз вашего компьютера.

    Маска подсети для Windows

    Для пользователей Mac и Linux:

    Введите ifconfig и нажмите ввод.

    Там будет строка с именем «Маска подсети», которая сообщит вам маску и шлюз вашего компьютера.

    Пишите в комментариях ниже, какую информацию добавить или убрать по данной теме. Открыт для предложений по оформлению и наполнению страницы.

  • Ссылка на основную публикацию
    Статьи c упоминанием слов:
    Adblock
    detector