20 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как узнать какая шина на материнской плате?

Как узнать какая шина на материнской плате?

Шины компьютера предназначены для высокоскоростной параллельной передачи информации, создаются системообразующими интегральными микросхемами материнской платы, реализуются в виде групп параллельно идущих печатных проводников и заканчиваются параллельно включенными разъемами (slots) для установки карт-контроллеров устройств ввода-вывода.

Функционально шина состоит из трех подшин:

Возможно совмещение адреса и данных на одной подшине и двусторонняя передача информации в режиме полудуплекса (поочередно). По подшине управления передаются сигналы синхронизации, выбора типа операции, выбора направления передачи, запроса на прерывание и его подтверждение, управления режимом прямого доступа и т.д. Конкретный перечень сигналов на шине и все протокольные соглашения (конструктивные, физические, логические) приводятся в спецификации на конкретную шину. Шина обычно безразлична к точке подключения (слоту) контроллера; выделение устройству конкретных системных ресурсов шины (адресов портов устройства, номеров прерываний и прямого доступа и т.д.) производится программно в момент инициализации операционной системы в рамках процедуры Plug&Play.

На сегодняшний день в настольных компьютерах присутствуют следующие типы шин:

· ISA (Industry Standard Architecture) – устаревшая, первая системная шина персонального компьютера, которая давно должна была закончить свое существование, но до сих пор, благодаря огромному количеству самых разнообразных внешних устройств, использующих ее, размещается в виде одного слота на ряде моделей материнских плат;

· PCI (Peripheral Component Interconnect) — разработана фирмой Intel для использования в системах с процессорами типа Pentium и в течение 10 лет является стандартом де-факто среди компьютерных шин общего назначения;

· AGP (Accelerated Graphics Port) — ускоренный графический порт, внедренный фирмой Intel, являющийся расширением шины PCI и призванный увеличить пропускную способность шины, связывающей видеокарту с процессором и памятью;

· FSB – внутренняя системная шина северного моста, связывающая оперативную память с процессором.

ISA

8-битную шину ISA разработала компания IBM в 1981 году для использования в компьютерах серии PC/XT. В 1984 году, при создании архитектуры AT, разрядность этой шины была расширена до 16 бит, и в таком виде она и дожила до нынешних времен, являясь отраслевым стандартом. Шина представляла собой синхронную 16-битную шину с раздельными линиями адреса и данных, работающую на частоте 8,33 МГц, с контролем четности и двухуровневыми прерываниями (trigger-edge interrupts), при использовании которых устройства запрашивают прерывания по переднему или заднему фронтам сигнала на линии соответствующего IRQ. Такая организация запросов прерываний позволяет использовать каждое прерывание только одному устройству. Основной особенностью шины ISA является простота ее реализации и низкая рабочая частота, что позволяет до сих пор использовать ее при создании нестандартных периферийных устройств самого различного назначения. До самого последнего времени шина ISA была единственной, для которой изготовлялись внутренние модемы с аппаратной реализацией управляющих схем, да и многие недорогие SCSI-сканеры комплектовались интерфейсными картами, рассчитанными именно под эту шину. В настоящий момент шина ISA практически закончила существование, передав свои функции более современным шинам: параллельной PCI и последовательной USB.

PCI

Появившаяся в 1992 году шина PCI имела несколько особенностей, позволивших ей за короткое время занять господствующее положение в IBM PC. Главными из них были ее открытая архитектура и независимость от процессорной шины. Шина PCI является синхронной 32-разрядной (кроме этого, существуют ее 64-разрядные версии, которые используются исключительно в дорогих рабочих станциях и серверах) и работает на частоте 33 МГц, обеспечивая пропускную способность (с использованием пакетного режима пересылки данных) 133 Мбайт/с. Процессор через так называемые мосты (PCI Bridge) может быть подключен к нескольким каналам PCI, обеспечивая возможность одновременной передачи данных между независимыми каналами PCI. Важной особенностью шины является реализация принципа Bus-master, что позволяет картам расширения производить обмен данными с памятью без обращения к процессору. Для уменьшения количества проводников в шине PCI используется принцип мультиплексирования данных, то есть адрес и данные передаются по одним и тем же физическим линиям поочередно. PCI-устройства оборудованы таймером, определяющим максимальный период времени, когда устройство может занимать шину.

Автоконфигурирование устройств PCI (выбор запросов прерывания, каналов DMA) поддерживается средствами BIOS материнской платы в соответствие со стандартом Plug&Play. Действующая в настоящее время спецификация PCI 2.2 обеспечивает поддержку плат расширения с напряжениями питания как 3,3, так и 5 вольт, причем тип платы определяется расположением ключей в разъеме. Если у карты PCI есть две ключевые выемки, то она поддерживает любой из вариантов слота, если же на ней только одна выемка ближе к передней части платы, то эта карта только на 3,3 вольта. При расположении выемки ближе к задней части — карта пятивольтовая.

AGP

В результате широкого распространения 3D-графики и поддерживающих ее видеокарт, нагрузка на шину PCI достигла предельных для нее значений, превратив участок процессор — PCI-видеокарта в очередное «узкое место» системы. Для разрешения возникшей проблемы с наименьшими затратами специалистами Intel была предложена новая спецификация шины, ориентированная исключительно на обмен данными с видеоадаптером: AGP 1.0, являющейся, по сути дела, расширением шины PCI. С целью ускорения обмена данными была устранена мультиплексированность линий адреса и данных, удвоена тактовая частота и реализована (в режиме AGP 2х) схема DDR, когда по шине передается 2 блока данных за один цикл. В результате предельная пропускная способность шины составила 533 Мбайт/с. Но очень скоро и этого стало не хватать, поэтому в новой спецификации AGP 2.0 (режим 4х), благодаря снижению напряжения питания видеокарт с 5 до 3,3 V, а значит, и амплитуды сигналов в шине, появилась возможность осуществлять не 2, а 4 транзакции (пересылки блока данных) за один такт, что удвоило пропускную способность шины, доведя ее до 1066 Мбайт/с. Для автоматического распознавания видеокарт разных спецификаций используются различные конфигурации их разъемов:

Шина AGP имеет два основных режима работы: DIME и DMA. В режиме DMA основной памятью является память карты. Текстуры хранятся в системной памяти, но перед использованием копируются в локальную память карты, используя механизм, аналогичный Bus-master на шине PCI. В режиме DIME (Direct Memory Execute — непосредственное выполнение в памяти, иногда используется другой термин — AGP-текстурирование) локальная и системная память для видеокарты логически равноправны, что позволяет использовать часть системной памяти для хранения текстур. В спецификации AGP 2.0 появилась поддержка нового режима передачи данных Fast Writes. Он позволяет процессору напрямую, не обращаясь к системной памяти, передавать данные ускорителю со скоростью 4х.

Для видеоакселераторов, отличающихся повышенным потреблением электроэнергии, предназначается еще одна разновидность стандарта AGP — AGP Pro, которая отличается лишь наличием в разъеме дополнительных линий питания. Эти контакты расположены в небольшой секции, добавленной к передней части стандартного разъема AGP, и обеспечивают работоспособность видеокарт, потребляющих до 110 Вт.

Следующим этапом было внедрение спецификации AGP версии 3.0, обеспечивающей режим работы AGP 8х. Эта спецификация — последняя, базирующаяся на стандарте шины PCI. Пропускная способность шины AGP 8х — 2133 Мбайт/с.

Современные видеопроцессоры берут на себя все большую часть вычислений, необходимых для формирования сложных объемных изображений, да и объем локальной памяти на видеокартах неуклонно растет, что ведет к уменьшению потока данных от процессора к видеокарте.

FSB

FSB – высокоскоростная параллельная 64-разрядная шина северного моста для связи с оперативной памятью. Использование технологии Quad Pumped Bus (четыре транзакции за цикл) позволяет при частоте шины 200 МГц поддерживать передачу данных с частотой 800 МГц. При этом, с учетом разрядности шины, обеспечивается поток данных 3.6 Гбайт/с. Особенностью шины является реализация режима двухканального обмена с двумя модулями оперативной памяти одновременно.

Перспективные шины

Шина PCI – основная системная шина IBM PC — становится узким местом при передаче данных между системными компонентами, и именно ее пропускная способность может существенно ограничить производительность перспективных компьютеров. Поэтому в настоящее время создаются несколько новых стандартов системных шин конкурентами — Intel и AMD, каждый их которых создает свой собственных проект перспективной системной шины. Эти технологии, Arapahoe и HyperTransport, призваны заменить системную шину PC, определив архитектурный облик компьютеров будущих поколений. Обе фирмы образовали свои «группы поддержки». Первую, под названием HyperTransport Technology Consortium (HTTC), возглавляет AMD. Эта группа продвигает на рынок одноименный стандарт под названием HyperTransport. Вторая группа, возглавляемая Intel, имеет название Arapahoe Working Group, и стандарт называется, соответственно, Arapahoe.

Шина Arapahoe, на начальной стадии разработки известная как 3GIO (3D Generation Input/Output), должна обеспечить высокоскоростное соединение между компонентами компьютера, а также между компьютером и другими устройствами. Разработчики обещают совместимость с существующими шинами, такими как InfiniBand, IEEE 1394b (FireWire), USB 2.0, Serial ATA и 1/10 Ethernet. Шина Arapahoe представляет собой симметричную двунаправленную шину, обеспечивающую передачу данных по одной линии со скоростью вплоть до 2.5 Гбит/с. В отличие от PCI, шина Arapahoe будет достаточно гибкой с точки зрения обеспечения максимальной пропускной способности, определяемой количеством используемых линий приема/передачи данных, задействованных разработчиком системы в зависимости от его потребностей в каждом конкретном случае. Например, в случае реализации 32 линий интерфейса пропускная способность шины составит величину порядка 10 Гбайт/с, что почти в 20 раз больше скорости работы 32-битной 33-мегагерцовой шины PCI. Как и шина PCI, Arapahoe использует технологию подключения периферийных устройств с помощью моста, но дополненную переключателями оконечных точек, позволяющими направлять потоки данных между периферийными устройствами, не используя сам мост, то есть позволяя осуществить подключение по схеме «peer-to-peer». Данное решение должно меньше загружать компьютер передачей данных между конечными устройствами за счет отсутствия кэширования в памяти передаваемых данных. Одним из несомненных преимуществ стандарта Arapahoe может стать поддержка DDR RAM и QDR RAM, что позволит работать с памятью соответственно вдвое и вчетверо быстрее, чем это было ранее.

Читать еще:  Куда деваются программисты после 40

Так же как и Arapahoe, системная шина HyperTransport, ранее известная как LDT (Lightning Data Transport) — это peer-to-peer шина, позволяющая обмениваться информацией между периферийными устройствами, не задействуя процессор и память. Протокол новой шины использует пакетированную передачу данных, когда за передачу данных между устройствами отвечает контроллер шины. Обе конкурирующие технологии, и Arapahoe, и HyperTransport, имеют много общего, но в отличие от симметричной Arapahoe, пропускная способность которой одинакова во всех направлениях, асимметричная шина HyperTransport позволяет подключенным устройствам обмениваться пакетами информации, пропускаемыми в разных направлениях с разной скоростью. Такое решение способствует максимальному использованию возможностей системы в тех случаях, когда информационные потоки в разных направлениях имеют сильно отличающуюся интенсивность, например в устройствах вывода видеоинформации. Шина позволяет передавать данные с частотой в 800 МГц по переднему и заднему фронтам тактового импульса, так что суммарная скорость работы шины получается около 12.8 Гбайт/с при передаче 16-разрядного слова за один такт.

Практическим результатом работы над новой системной шиной для материнских плат на чипсетах фирмы Intel стало постепенное внедрение шины PCI Express. Особенностью шины является гибкость спецификации, которая в настоящее время позволяет устанавливать на материнскую плату слоты шины с разными скоростными параметрами, ориентированными на соответствующий класс устройств ввода-вывода: от шины с однократной скоростью PCI Express х1 (500 Мбайт/с) до PCI Express х16 (8 Гбайт/с). Последний вариант шины реализует двухканальный обмен с видеокартами нового поколения и заменяет стандартную видеошину AGP 8x.

Порты IBM PC

За относительно короткий, но бурный период расцвета IBM-совместимых персональных компьютеров было создано множество самых разнообразных устройств, значительно расширяющих изначальные возможности базовых систем. Но, вместе с тем, избежать взаимной несовместимости различных устройств, произведенных в различное время и в различных странах многочисленными компаниями, позволило использование в любых компьютерных устройствах ряда стандартных интерфейсов.

Порты являются развитием шинной архитектуры материнской платы, включают в себя интегрированные контроллеры определенного класса устройств ввода-вывода и заканчиваются соответствующим стандартным разъемом для подключения внешнего устройства, способного работать в этом стандарте. В соответствии с названием порту выделяются конкретные системные ресурсы (диапазон адресации регистров порта, ресурсы прерываний и прямого доступа к памяти).

Обычно разъемы интерфейсов для подключения внешних устройств располагаются на обратной стороне корпуса ПК, причем на системных платах стандарта АТХ большинство внешних портов распаяно непосредственно на плате.

Что такое материнская плата

Одним из самых важных элементов компьютера является системная, она же известная как материнская, плата. Эта текстолитовая пластина с припаянными к ней микросхемами и разъёмами выполняет сборочную функцию, объединяя все остальные элементы компьютера. Без материнской платы не собрать ни компьютер, ни смартфон, ни какое-либо другое сложное устройство. Она — основа всего.

Материнская плата, что это?

Системная (материнская) плата соединяет все важнейшие элементы компьютера. Благодаря ей организуются все сложные процессы и выполняются задачи. Даже компьютерные мышь и клавиатура работают так, как они работают, потому что обмениваются информацией с остальными устройствами через системную плату. Работоспособность всего компьютера зависит от неё. Да и скорость — тоже. Потому очень важно при сборе компьютера учитывать пропускную способность шины системной платы.

Главные элементы материнской платы:

  • Чипсет. Набор микросхем, связующий компонент для других элементов.
  • Северный мост. Соединяет процессор с остальными компонентами.
  • Южный мост. Подключает компоненты, которым не требуется высокая скорость.
  • BIOS. Микросхема со стартовым ПО для прозвона компонентов и запуска операционной системы.

Положение при установке, количество подключаемых устройств, тип разъёмов и многое другое определяется форматом системной платы. Материнские платы бывают разных форматов. Вот самые распространённые:

Самая компактная плата — Mini ITX, идёт с интегрированным процессором, редко когда используется при самостоятельном сборе компьютера. Следующая по размеру — mATX. Отличная плата для офисного или домашнего рабочего компьютера. ATX — самая крупная и функциональная плата, к ней можно подключить гораздо больше устройств. Подходит для профессиональных рабочих компьютеров (для дизайна, программирования, работы с видео и других занятий) и игровых системников. Если вы самостоятельно собираете компьютер, лучше сначала приобретайте подходящую системную плату, а затем — системный блок, в который войдёт и она, и все дополнительные подключаемые элементы.

Микросхема BIOS на системной плате

После того, как вы нажали на кнопку питания на своём компьютере, он первым делом обращается к BIOS. Это — наиважнейшая микросхема, которая устанавливается на материнскую плату. Да, те белые надписи, которые пробегаются по экрану вашего компьютера, демонстрируют работу микросхемы BIOS. Она проверяет работоспособность всех систем, связывается с подключенными устройствами (монитором, клавиатурой, мышью и другими внешними). Работа BIOS-а не прекращается до момента выключения.

Почему он так важен и как вообще работает? Всё просто. На микросхеме BIOS заранее записано базовое программное обеспечение, которое необходимо для того, чтобы компьютер вообще запустился. Это ПО прозванивает все компоненты и затем запускает основную операционную систему. Свой собственный BIOS может стоять не только на системной плате, но также на видеокартах и другом современном высокотехнологичном железе.

Шины на материнской плате

Все данные между компонентами, установленными на материнской плате, должны как-то передаваться, чтобы компьютер вообще функционировал. Для этого и используются шины — группы проводников, по которым пересылаются команды от одного компонента к другому.

У шин системной платы разный функционал. Основная передача данных осуществляется по адресной шине, которая считается основной. Шины, связывающие процессор с оперативной памятью, формируют одну общую, по частоте которой можно судить о скорости системной платы. Пропускная способность шин — важный параметр, на который стоит обращать внимание при выборе системной платы для сборки собственного компьютера. Другие шины позволяют подключать сторонние устройства и расширять возможности всего компьютера.

Узнаем частоту системной шины процессора

Всем привет! В этом посте я расскажу, как узнать частоту шины процессора, где можно посмотреть эту характеристику и как определить с помощью специальных программ.

Что такое шина FSB

Хочу отдельно отметить, что способ как определить, на какой частоте работает шина на системной плате ПК, не зависит от бренда процессора. Измеряется она одинаково у Intel и AMD.

Шина FSB (Front Side Bus) соединяет CPU компьютера с прочими компонентами. Эффективная частота этой шины на порядок меньше, чем тактовая частота ЦП.

Связано это с тем, что прочим компонентам требуются не все данные, обрабатываемые процессором, а только итоговые результаты вычислений.

Благодаря изменениям этого параметра можно повысить производительность системы в целом. При ее увеличении данные передаются на прочие компоненты чаще. Логично, что максимальной эффективности удается добиться при максимальной частоте шины.

Однако такую опцию поддерживают только ЦП с возможность разгона — те, у которых в маркировке присутствует буква K (речь о компании Intel). Также материнка компьютера должна поддерживать изменение множителя.

При несоблюдении этих условий «выжать» больше в вашей сборки не выйдет.

Типичный пример — использование навороченного CPU в связке с бюджетной материнкой. Если системная плата не даст разогнать шину, вкладываться в прочие дорогие комплектующие не имеет большего смысла.

Теперь рассмотрим программы, с помощью которых можно узнать интересующую нас характеристику.

Утилита бесплатная, но с англоязычным интерфейсом. После ее запуска переключитесь на вкладку CPU. В левой части в разделе Clocks найдите строку Bus Speed. Это и есть необходимый параметр.

AIDA64

Программа русифицирована, но она платная (невзначай напоминаю о пиратской бухте, йо-хо-хо). В отличие от предыдущей утилиты, это приложение может показать не только текущую частоту, но и допустимые пределы для повышения или понижения.

После запуска программы найдите системную плату в списке в левой части интерфейса. Если выделить эту деталь, в правой части экрана появится сводка с детальными характеристиками. Нужный нам параметр расположен в категории «Свойства шины FSB» в строке «Реальная частота».Также советую почитать «Что такое графический процессор и какие у него возможности?» и «Существует ли способ увеличить производительность центрального процессора в компьютере?». О том, для чего стоит понижать производительность CPU и как это сделать, можно почитать тут.

Подписывайтесь на меня в социальных сетях, если хотите своевременно получать уведомления о публикации новых материалов. До скорой встречи!

Как узнать какая шина на материнской плате?

Михаил Тычков aka Hard

Доброго времени суток.

Если процессор – это сердце персонального компьютера, то шины – это артерии и вены по которым текут
электрические сигналы. Строго говоря, это каналы связи, применяемые для организации взаимодействия между устройствами
компьютера. Кстати, если Вы думаете, что те разъемы, куда вставляются платы расширения и есть шины, то Вы жестоко
ошибаетесь. Это интерфейсы (слоты, разъемы), с их помощью осуществляется подключение к шинам, которых, зачастую, вообще
не видно на материнских платах.

Существует три основных показателя работы шины. Это тактовая частота, разрядность и скорость передачи
данных. Начнем по порядку.

Тактовая частота

Работа любого цифрового компьютера зависит от тактовой частоты, которую определяет
кварцевый резонатор. Он представляет собой оловянный контейнер в который помещен кристалл кварца. Под воздействием
электрического напряжения в кристалле возникают колебания электрического тока. Вот эта самая частота колебания и
называется тактовой частотой. Все изменения логических сигналов в любой микросхеме компьютера происходят через
определенные интервалы, которые называются тактами. Отсюда сделаем вывод, что наименьшей единицей измерения времени для
большинства логических устройств компьютера есть такт или еще по другому – период тактовой частоты. Проще говоря – на
каждую операцию требуется минимум один такт (хотя некоторые современные устройства успевают выполнить несколько операций
за один такт). Тактовая частота, применительно к персональным компьютерам, измеряется в МГц, где Герц – это одно колебание
в секунду, соответственно 1 МГц – миллион колебаний в секунду. Теоретически, если системная шина Вашего компьютера
работает на частоте в 100 МГц, то значит она может выполнять до 100 000 000 операций в секунду. К слову сказать,
совсем не обязательно, что бы каждый компонент системы обязательно что-либо выполнял с каждым тактом. Существуют так
называемые пустые такты (циклы ожидания), когда устройство находится в процессе ожидания ответа от какого либо другого
устройства. Так, например, организована работа оперативной памяти и процессора (СPU), тактовая частота которого значительно
выше тактовой частоты ОЗУ.

Читать еще:  Softwaredistribution old можно ли удалить?

Разрядность

Шина состоит из нескольких каналов для передачи электрических сигналов. Если говорят,
что шина тридцатидвухразрядная, то это означает, что она способна передавать электрические сигналы по тридцати двум каналам
одновременно. Здесь есть одна фишка. Дело в том, что шина любой заявленной разрядности (8, 16, 32, 64) имеет, на самом
деле, большее количество каналов. То есть, если взять ту же тридцатидвухразрядную шину, то для передачи собственно данных
выделено 32 канала, а дополнительные каналы предназначены для передачи специфической информации.

Скорость передачи данных

Название этого параметра говорит само за себя. Он высчитывается по формуле:

тактовая частота * разрядность = скорость передачи данных

Сделаем расчет скорости передачи данных для 64 разрядной системной шины, работающей на тактовой частоте
в 100 МГц.

100 * 64 = 6400 Мбит/сек

6400 / 8 = 800 Мбайт/сек

Но полученное число не является реальным. В жизни на шины влияет куча всевозможных факторов:
неэффективная проводимость материалов, помехи, недостатки конструкции и сборки а также многое другое. По некоторым
данным, разность между теоретической скоростью передачи данных и практической может составлять до 25%.

За работой каждой шины следят специально для этого предназначенные контроллеры. Они входят в состав
набора системной логики (чипсет).

Теперь поговорим конкретно о тех шинах, которые присутствуют на материнской плате. Основной
считается системная шина FSB (Front Side Bus). По этой шине передаются данные между процессором и оперативной памятью,
а также между процессором и остальными устройствами персонального компьютера. Вот тут вот есть один подводный камень.
Дело в том, что работая над материалом этой статьи, я столкнулся с одной неразберихой – существует такая фигня, как шина
процессора. По одним данным системная шина и шина процессора это есть одно и тоже, а по другим – нет. Я перерыл кучу книг
и пересмотрел кучу схем. Вывод: поначалу процессор подключался к основной системной шине через собственную, процессорную,
шину, в современных же системах эти шины стали одним целым. Мы говорим – системная шина, а подразумеваем процессорную, мы
говорим — процессорная шина, а подразумеваем системную. Двинемся дальше. Фраза: «Моя материнская плата работает на частоте
100 МГц» означает, что именно системная шина работает на тактовой частоте в 100 МГц. Разрядность FSB равна разрядности
CPU. Если Вы используете 64 разрядный процессор, а тактовая частота системной шины 100 МГц, то скорость передачи данных
будет равна 800 Мбайт/сек.

Кроме системной шины на материнской плате есть еще шины ввода/вывода, которые отличаются друг от друга
по архитектуре. Перечислю некоторые из них:

Системная шина — что это?

Здравствуйте, уважаемые читатели блога Pc-information-guide.ru. Очень часто на просторах интернета можно встретить много всякой компьютерной терминологии, в частности — такое понятие, как «Системная шина». Но мало кто знает, что именно означает этот компьютерный термин. Думаю, сегодняшняя статья поможет внести ясность.

Системная шина (магистраль) включает в себя шину данных, адреса и управления. По каждой их них передается своя информация: по шине данных — данные, адреса — соответственно, адрес (устройств и ячеек памяти), управления — управляющие сигналы для устройств. Но мы сейчас не будем углубляться в дебри теории организации архитектуры компьютера, оставим это студентам ВУЗов. Физически магистраль представлена в виде многочисленных дорожек (контактов) на материнской плате.

Я не случайно на фотографии к этой статье указал на надпись «FSB». Дело в том, что за соединение процессора с чипсетом отвечает как раз шина FSB, которая расшифровывается как «Front-side bus» — то есть «передняя» или «системная». И ее частота является важным параметром , на который обычно ориентируются при разгоне процессора, например.

Существует несколько разновидностей шины FSB, например, на материнских платах с процессорами Intel шина FSB обычно имеет разновидность QPB, в которой данные передаются 4 раза за один такт. Если речь идет о процессорах AMD, то там данные передаются 2 раза за такт, а разновидность шины имеет название EV6. А в последних моделях CPU AMD, так и вовсе — нет FSB, ее роль выполняет новейшая HyperTransport.

Итак, между чипсетом и центральным процессором данные передаются с частотой, превышающей частоту шины FSB в 4 раза. Почему только в 4 раза, см. абзац выше. Получается, если на коробке указано 1600 МГц (эффективная частота), в реальности частота будет составлять 400 МГц (фактическая). В дальнейшем, когда речь пойдет о разгоне процессора (в следующих статьях), вы узнаете, почему необходимо обращать внимание на этот параметр. А пока просто запомните, чем больше значение частоты, тем лучше.

Кстати, надпись «O.C.» означает, буквально «разгон», это сокращение от англ. Overclock, то есть это предельно возможная частота системной шины, которую поддерживает материнская плата. Системная шина может спокойно функционировать и на частоте, существенно ниже той, что указана на упаковке, но никак не выше нее.

Вторым параметром, характеризующим системную шину, является пропускная способность . Это то количество информации (данных), которая она может пропустить через себя за одну секунду. Она измеряется в Бит/с. Пропускную способность можно самостоятельно рассчитать по очень простой формуле: частоту шины (FSB) * разрядность шины. Про первый множитель вы уже знаете, второй множитель соответствует разрядности процессора — помните, x64, x86(32)? Все современные процессоры уже имеют разрядность 64 бита.

Итак, подставляем наши данные в формулу, в итоге получается: 1600 * 64 = 102 400 МБит/с = 100 ГБит/с = 12,5 ГБайт/с. Такова пропускная способность магистрали между чипсетом и процессором, а точнее, между северным мостом и процессором. То есть системная, FSB, процессорная шины — все это синонимы. Все разъемы материнской платы — видеокарта, жесткий диск, оперативная память «общаются» между собой только через магистрали. Но FSB не единственная на материнской плате, хотя и самая главная, безусловно.

Как видно из рисунка, Front-side bus (самая жирная линия) по-сути соединяет только процессор и чипсет, а уже от чипсета идет несколько разных шин в других направлениях: PCI, видеоадаптера, ОЗУ, USB. И совсем не факт, что рабочие частоты этих подшин должны быть равны или кратны частоте FSB, нет, они могут быть абсолютно разные. Однако, в современных процессорах часто контроллер ОЗУ перемещается из северного моста в сам процессор, в таком случае получается, что отдельной магистрали ОЗУ как бы не существует, все данные между процессором и оперативной памятью передаются по FSB напрямую с частотой, равной частоте FSB.

Блог о Linux и Windows

Записки по настройке Debian Ubuntu и Microsoft Windows

Ликбез по материнским платам.

Материнская плата (системная плата, mainboard, motherboard, «мамка», «мать») основная плата персонального компьютера (PC), с которой непосредственно (или через «посредников») связаны все устройства PC.

Форм-фактор – это, по сути дела, стандарт, определяющий размеры материнской платы, места ее крепления к корпусу; расположение на ней интерфейсов шин, портов ввода/вывода, процессорного гнезда и слотов для оперативной памяти, а так же тип разъема для подключения блока питания.

Подавляющее большинство персональных компов имеют форм-фактор материнской платы АТХ (разновидности Mini-ATX, Micro-ATX, Flex-ATX)

Этот стандарт разработан компанией Intel в 1995 году Стандарт предусматривает: материнские платы должны иметь порты ввода/вывода в как бы одном блоке в верхнем левом углу. Эта сдвоенная панель имеет размеры 15,4х4,4см. Кроме этого, изменилось расположение процессорного гнезда, разъемов IDE и слотов оперативной памяти, разъем подключения блока питания предотвращающий неправильное подключение электропитания. Малое количество шлейфов способствует лучшей циркуляции воздуха в корпусе. Размеры плат форм-фактора АТХ — 30,5х24,4 см. Впоследствии появились уменьшенные версии материнских плат АТХ: Mini-ATX – 28,4х20,8 см, Micro-ATX – 24,4х24,4 см и Flex-ATX – 22,9х20,3 см.

Элементы составляющие материнскую плату:

Чипсет (Chip Set) — набор микросхем. Это несколько микросхем, основной целью которых является логическая организация взаимодействия между устройствами компьютера по приему, обработке и передаче какой-либо информации. Чипсет включает: контроллер шин, генератор тактовой частоты, системный таймер, контроллер прерываний, контроллер прямого доступа к памяти, CMOS.

Внешне микросхемы чипсета выглядят, как самые большие после процессора, с количеством выводов от нескольких десятков до двух сотен.

Именно чипсет определяет функциональные возможности платы: типы поддерживамых процессоров, структура/объем кэша, возможные сочетания типов и объемов модулей памяти, поддержка режимов энергосбережения, возможность программной настройки параметров и т.п. На одном и том же наборе выпускается несколько моделей системных плат, которые отличаются производителем, функциональностью, производительностью и конечно ценой.

В настоящий момент набор системной логики (чипсет) состоит из двух микросхем (еще говорят: имеет двухуровневую архитектуру): North Bridge (северный мост) и South Bridge (южный мост). North Bridge, кроме всего прочего, содержит: кэш, контроллеры оперативной памяти (ОЗУ), осуществляет взаимодействие между шиной процессора и шинами PCI, AGP. Частота работы этой микросхемы равна тактовой частоте материнской платы. Современные North Bridge работают на высоких тактовых частотах и поэтому в последнее время дополнительно оборудуются устройствами охлаждения (чаще всего радиатор, однако отдельные образцы имеют элемент принудительного охлаждения – вентилятор).

South Bridge является более медленной микросхемой. Этот компонент отвечает за работу шины ISA (в наличии имеется контроллер прямого доступа и контроллер прерываний этой шины), контроллеров IDE и USB, а также реализует функции памяти CMOS и часов и т. д. Следует отметить, что один и тот же тип микросхемы South Bridge может использоваться, как правило, в нескольких наборах системной логики, то есть может работать с несколькими типами North Bridge.

На данный момент чипсеты выпускают Intel, VIA Technologies, SiS и Nvidia.

Socket (сокет) разъем для крепления процессора. Разновидности применяемые в настоящее время:

1. Для процессоров AMD: Socket A (Socket 462) – вымирающий вид, Socket 754, Socket 939 и Socket 940 (широкого распространения не получил).

2. Для процессоров Intel: Socket 478 и Socket LGA 775

Читать еще:  Как раздать интернет с телефона Андроид на компьютер

Число показывает количество гнезд (на мат. плате) и количество штырьков (на процессоре), которыми они объединяются. Особенностью Socket LGA 775, является, то что штырьки и гнезда расположены наоборот – штырьки на мат. плате, а гнезда на процессоре.

CMOS — это Complementary Metal-Oxide-Semiconductor.

Сия технология позволяет создавать более экономичные микросхемы. Эффект экономии достигается за счет уменьшения потребления энергии, что позволяет использовать в качестве питающего элемента батарейку не большой емкости.

Назначение — хранение настроек BIOS, которые можно менять с помощью программы Setup. Хранение настроек даже при длительном НЕ включении питания осуществляется за счет небольшой батарейки, расположенной неподалеку.

Благодаря программе Setup можно изменить параметры конфигурации системы, настроить работу некоторых устройств, защитить компьютер от несанкционированного включения и так далее.

BIOS

Полное название БИОСа – ROM BIOS (Read Only Memory Basic Input/Output System – только для чтения основная система ввода/вывода). По-русски это будет – ПЗУ (Постоянное Запоминающее Устройство).

Назначение — ПЗУ является связующим звеном, между операционной системой и железом. Не будь ROM BIOS, то операционная система (ОС) была бы через чур привязана к аппаратным средствам и полностью бы от них зависела. А это ни есть хорошо — подгонять операционную систему под каждую конфигурацию аппаратных средств. Любая система укомплектована своей ROM BIOS, а поскольку операционные системы имеют единый интерфейс для работы с различной аппаратурой, то проблем в несовместимости hardware (аппаратной, «железной» части) и software (программная часть), как правило не происходят, так как между ними как раз и стоит BIOS.

Каждая материнская плата оснащена микросхемой BIOS, которых существовало четыре типа:

1. ROM (Read Only Memory) или ПЗУ;

2. PROM (Programmable ROM) или ППЗУ (Программируемое ПЗУ);

3. EPROM (Erasable PROM) или СППЗУ (Стираемое ППЗУ);

4. EEPROM (Electrically EPROM) или ЭСППЗУ (Электронно – Стираемое ППЗУ), второе название – flash ROM.

Три первых присоединились к динозаврам, осталась только

Основное преимущество этих микросхем заключается в том, что для перепрограммирования не требуется их снятия с материнской платы и не требуется никакого дополнительного оборудования. Уже с 1994 года почти все системные платы оснащаются flash ROM, а на данный момент времени другого BIOS и не встретишь.

По сути дела это набор драйверов (драйвер – программа управления устройством), обеспечивающих работу системы при запуске компьютера или при загрузке в безопасном режиме. Дело в том, что когда Вы включаете комп, то еще до загрузки операционной системы можно управлять им с клавиатуры, видеть все действия на мониторе. Кроме этого, если Вы загружаетесь в безопасном режиме, то отказываетесь от драйверов операционной системы и в работе остаются только драйвера BIOS.

При использовании скажем ОС Windows XP после ее загрузки, она берет на себя практически все функции БИОС, а сам БИОС служит лишь для начальной загрузки.

Основные производители ROM BIOS – Phoenix Technologies, и AMI (American Megatrends, Inc).

Шины – магистрали осуществляющие передачу сигналов между устройствами. Однако устройства подключаются не непосредственно к шинам, а к разъемам (слотам), и уже разъемы (слоты) осуществляют подключение к шинам. Разъемы (слоты) – можно охарактеризовать как интерфейс шины.

Существует три основных показателя работы шины. Это тактовая частота, разрядность и скорость передачи данных.

Работа любого цифрового компьютера зависит от тактовой частоты, которую определяет кварцевый резонатор. Он представляет собой оловянный контейнер в который помещен кристалл кварца. Под воздействием электрического напряжения в кристалле возникают колебания электрического тока. Вот эта самая частота колебания и называется тактовой частотой. Все изменения логических сигналов в любой микросхеме компьютера происходят через определенные интервалы, которые называются тактами. Отсюда сделаем вывод, что наименьшей единицей измерения времени для большинства логических устройств компьютера есть такт или еще по другому – период тактовой частоты. Проще говоря – на каждую операцию требуется минимум один такт (хотя некоторые современные устройства успевают выполнить несколько операций за один такт). Тактовая частота, применительно к персональным компьютерам, измеряется в МГц, где Герц – это одно колебание в секунду, соответственно 1 МГц – миллион колебаний в секунду. Теоретически, если системная шина компьютера работает на частоте в 100 МГц, то значит она может выполнять до 100 000 000 операций в секунду. К слову сказать, совсем не обязательно, что бы каждый компонент системы обязательно что-либо выполнял с каждым тактом. Существуют так называемые пустые такты (циклы ожидания), когда устройство находится в процессе ожидания ответа от какого либо другого устройства. Так, например, организована работа оперативной памяти и процессора (СPU), тактовая частота которого значительно выше тактовой частоты ОЗУ.

Фактическая частота шин современных плат находятся в пределах 133-200 Мгц, а эффективная частота (кратное умножение фактической) на уровне 533-1066 Мгц. Именно эффективную частоту указывают в спецификациях и прайс листах.

Разрядность

Шина состоит из нескольких каналов для передачи электрических сигналов. Если говорят, что шина тридцатидвухразрядная, то это означает, что она способна передавать электрические сигналы по тридцати двум каналам одновременно. Здесь есть одна фишка. Дело в том, что шина любой заявленной разрядности (8, 16, 32, 64) имеет, на самом деле, большее количество каналов. То есть, если взять ту же тридцатидвухразрядную шину, то для передачи собственно данных выделено 32 канала, а дополнительные каналы предназначены для передачи специфической информации. Актуальные шины на данный момент 32 и 64 разрядные, также существуют 128 разрядные (например для процессора Intel Itanium).

Скорость передачи данных

Она высчитывается по формуле:

тактовая частота шины * разрядность шины = скорость передачи данных

например: 133*64=8512 Мбит/сек или 1064 Мбайт/сек (8512/8 т.к. 1 байт=8 бит).

Однако это чисто теоретически, а как известно теория и практика часто расходятся.

За работой каждой шины следят специально для этого предназначенные контроллеры. Они входят в состав набора системной логики (чипсета).

Шины материнской платы существующие в настоящее время:

1. FSB (Front Side Bus) — системная шина, считается основной. По этой шине передаются данные между процессором и оперативной памятью, а также между процессором и остальными устройствами персонального компьютера. Вышеприведенные частоты – это частоты именно FSB, так же FSB является процессорной шиной, процессор имеет такую же частоту и разрядность (с одной оговоркой: процессор использует множитель, который «умножая» частоту FSB и выдает частоту процессоры в несколько гига герц (1 Ггц=1024 Мгц).

2. PCI (Peripheral Component Interconnect bus – шина соединения периферийных компонентов). Корнями уходит в далекий 1992 г., родителем сего творения стала не мало известная Intel

Тактовая частота PCI может быть равна или 33 МГц или 66 МГц. Разрядность – 32 или 64. Скорость передачи данных – 132 Мбайт/сек или 264 Мбайт/сек. Стандартом PCI предусмотрены три типа плат в зависимости от питания:

1. 5 Вольт – для стационарных компьютеров

2. 3,3 Вольт – для портативных компьютеров

3. Универсальные платы могущие работать в обоих типах компьютеров.

За бесконфликтную работу шины PCI отвечает чипсет, а точнее North Bridge. Но на PCI жизнь не остановила своего течения. Постоянное усовершенствование видеокарт привело к тому, что физических параметров шины PCI стало не хватать, что и привело к появлению AGP. Но это для видеокарт. Для остальных же плат расширения (звуковые карты, внутренние модемы и прочее), производительности PCI вполне достаточно и по сегодняшний день. Разъемов (слотов) PCI на мат. плате обычно от 3до 5. Современным воплощением шины PCI стали PCI Express x16 (вытесняет AGP, высокоскоростная шина предназначена для поддержки видеокарт), PCI Express x4, PCI Express x1

3. AGP (Accelerated Graphics Port – ускоренный графический порт)

На материнской плате этот порт существует в единственном виде. Ни физически, ни логически он не зависит от PCI. Первый стандарт AGP 1.0 появился в 1996 году благодаря инженерам все той же Intel.

Тактовая частота от 66,66 до 90 МГц, Сейчас существуют шины AGP с режимом сигнализации 4х и 8х, рабочее напряжение равное 1,5 В.

Режимы 4х и 8х означают что передача данных происходит четыре и восемь раза за каждый цикл (такт) соответственно (основной (базовый) режим AGP называется 1х, так же был вариант 2х, но и первый и второй найти уже можно только в музеях .

Разрядность (ширина) шины AGP – 32 бита. Большим достижением AGP является возможность получить быстрый доступ к оперативной. Как было сказано выше на смену ей приходит PCI Express x16

4. USB (Universal Serial Bus) — универсальная последовательная магистраль (шина)- интерфейс для подключения различных внешних устройств. Поддерживается горячее (на ходу, не выключая комп.) подключение/отключение и питание от шины. Функционирует на скоростях 1.5 Мбит/с, 12 Мбит/с и 480 Мбит/с (последнее для версии 2.0)

В настоящее время существуют две разновидности USB – USB 1.1 и USB 2.0, вторая более современная, может работать с устройствами поддерживающими USB 1.1, но не наоборот. Правило совместимости «сверху вниз» присуще практически для всех шин).

IDE (Integrated Device Electronics) – интегрированная в устройство электроника. Интерфейс для подключения жестких дисков. Доживает свой век, на смену приходит SATA (Serial Advanced Technology Attachment — высокоскоростной последовательный интерфейс, предназначенный для устройств хранения информации.

Слоты памяти.

Если не обращаться к музейным экспонатам, то сейчас использует два вида разъемов для памяти DIMM и RIMM, исходя из того, что память предназначенная для RIMM (Rambus Inline Memory Modules) из за своей стоимости широкого распространения не получила, остается лишь DIMM (Dual In-line Memory Module — Модуль памяти с двусторонним расположением выводов). Именно на плечи данного слота и пало нелегкое бремя поддержки памяти типа SDRAM (Synchronous Dynamic Random Access Memory) синхронное динамическое запоминающее устройство с произвольным порядком выборки (работа памяти синхронизирована с шиной), DDR (Double Data Rate) SDRAM (изредка можно встретить такую аббревиатуру SDRAM 2), и наконец третьего вида памяти DDR2.

Разъем имеет 184 контакта и 168 для устаревшей SDRAM, рабочие частоты шины – это частоты FSB.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector