20 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Arduino pro mini 168 распиновка. Распиновка плат ардуино Arduino board pinmaping

Содержание

Распиновка плат ардуино Arduino board pinmaping

Arduino — это эффективное средство разработки программируемых электронных устройств, которые, в отличие от персональных компьютеров, ориентированы на тесное взаимодействие с окружающим миром. Ардуино — это открытая программируемая аппаратная платформа для работы с различными физическими объектами и представляет собой простую плату с микроконтроллером, а также специальную среду разработки для написания программного обеспечения микроконтроллера.

Ардуино может использоваться для разработки интерактивных систем, управляемых различными датчиками и переключателями. Такие системы, в свою очередь, могут управлять работой различных индикаторов, двигателей и других устройств. Проекты Ардуино могут быть как самостоятельными, так и взаимодействовать с программным обеспечением, работающем на персональном компьютере (например, приложениями Flash, Processing, MaxMSP). Любую плату Ардуино можно собрать вручную или же купить готовое устройство; среда разработки для программирования такой платы имеет открытый исходный код и полностью бесплатна.

Язык программирования Ардуино является реализацией похожей аппаратной платформы «Wiring», основанной на среде программирования мультимедиа «Processing».

Почему именно Arduino?

Существует множество других микроконтроллеров и микропроцессорных устройств, предназначенных для программирования различных аппаратных средств: Parallax Basic Stamp, Netmedia’s BX-24, Phidgets, MIT’s Handyboard и многие другие. Все эти устройства предлагают похожую функциональность и призваны освободить пользователя от необходимости углубляться в мелкие детали внутреннего устройства микроконтроллеров, предоставив ему простой и удобный интерфейс для их программирования. Ардуино также упрощает процесс работы с микроконтроллерами, но в отличие от других систем предоставляет ряд преимуществ для преподавателей, студентов и радиолюбителей:

Компактные платы ардуино :

Платформа Nano, построенная на микроконтроллере ATmega328 (Arduino Nano 3.0) или ATmega168 (Arduino Nano 2.x), имеет небольшие размеры и может использоваться в лабораторных работах. Она имеет схожую с Arduino Duemilanove функциональность, однако отличается сборкой. Отличие заключается в отсутствии силового разъема постоянного тока и работе через кабель Mini-B USB. Nano разработана и продается компанией Gravitech.
Наверное одна из лучших и компактных плат для различных проектов и самоделок , обычно выбираю её :

Лучшая цена на алиэкспресс http://ali.pub/1tgxgp

Партия из 5 штук — дешевле http://ali.pub/1tgxho

Ардуино про мини


Arduino pro micro

Плата Arduino Pro Micro построена на микроконтроллере ATmega32U4, что позволило не применяя конвертер USB-UART подключать плату в USB-порту компьютера. Это исключает необходимость применения программатора для записи скетча в плату.

  • частота: 16МГц
  • 4 канала АЦП (10 бит)
  • 10 портов ввода-вывода общего назначения (из них 5 с ШИМ)
  • выводы Rx/Tx
  • светодиоды: питание, Rx, Tx

Плата имеет регулятор напряжения, что позволяет использовать питание до 12В (вывод RAW, не VCC!)


Полноразмерные платы ардуино

Ардуино Уно

Arduino Uno контроллер построен на ATmega328 (техническое описание , pdf). Платформа имеет 14 цифровых вход/выходов (6 из которых могут использоваться как выходы ШИМ), 6 аналоговых входов, кварцевый генератор 16 МГц, разъем USB, силовой разъем, разъем ICSP и кнопку перезагрузки.


Ардуино DUE

Общие сведения

Arduino Due — плата микроконтроллера на базе процессора Atmel SAM3X8E ARM Cortex-M3 (описание). Это первая плата Arduino на основе 32-битного микроконтроллера с ARM ядром. На ней имеется 54 цифровых вход/выхода (из них 12 можно задействовать под выходы ШИМ), 12 аналоговых входов, 4 UARTа (аппаратных последовательных порта), a генератор тактовой частоты 84 МГц, связь по USB с поддержкой OTG, 2 ЦАП (цифро-аналоговых преобразователя), 2 TWI, разъем питания, разъем SPI, разъем JTAG, кнопка сброса и кнопка стирания.

Внимание! В отличие от других плат Arduino, Arduino Due работает от 3,3 В. Максимальное напряжение, которое выдерживают вход/выходы составляет 3,3 В. Подав более высокое напряжение, например, 5 В, на выводы Arduino Due, можно повредить плату.

Плата содержит все, что необходимо для поддержки микроконтроллера. Чтобы начать работу с ней, достаточно просто подключить её к компьютеру кабелем микро-USB, либо подать питание с AC/DC преобразователя или батарейки. Due совместим со всеми платами расширения Arduino, работающими от 3,3 В, и с цоколевкой Arduino 1.0.

Arduino ESPLORA

Общие сведения

Arduino Esplora — это микропроцессорное устройство, спроектированное на основе Arduino Leonardo . Esplora отличается от всех предыдущих плат Arduino наличием множества встроенных, готовых к использованию датчиков для взаимодействия. Он спроектирован для тех, кто предпочитает сразу начать работу с Ардуино, не изучая перед этим электронику. Пошаговую инструкцию к Esplora вы сможете найти в руководстве Начало работы с Esplora .

Esplora имеет встроенные звуковые и световые индикаторы (для вывода информации), а также несколько датчиков (для ввода информации), таких, как джойстик, слайдер, датчик температуры, акселерометр, микрофон и световой датчик. Помимо этого, на плате есть два входных и выходных разъема Tinkerkit, а также гнездо для подключения жидкокристаллического TFT-экрана, позволяющие значительно расширить возможности устройства.

Как и на плате Leonardo, в Esplora используется AVR-микроконтроллер ATmega32U4 с кварцевым резонатором 16 МГц, а также разъем микро-USB, позволяющий устройству быть USB-гаджетом, подобно мыши или клавиатуре.

Arduino YUN

Arduino Yun – отладочная плата на базе микроконтроллера ATmega32u4 и Atheros AR9331. Процессор Atheros поддерживает дистрибутив Linux, основанный на базе OpenWrt и называемый OpenWrt-Yun. Плата имеет встроенную поддержку Ethernet и WiFi, порт USB-A, слот для карты micro-SD, 20 цифровых входных/выходных выводов (из которых 7 могут использоваться в качестве ШИМ выходов, а 12 – в качестве аналоговых входов), кварцевый резонатор 16 МГц, соединение microUSB, разъем ICSP и 3 кнопки перезагрузки.

Купить на Алиэкспресс http://ali.pub/1tgz6c


Заказываешь на Aliexpress ?Узнай как экономить покупая на али кэшбек

ОБОРУДОВАНИЕ
ТЕХНОЛОГИИ
РАЗРАБОТКИ

Блог технической поддержки моих разработок

Главное меню

Урок 46. Другие платы Ардуино с микроконтроллерами ATmega168/328. Плата Arduino Pro Mini.

В уроке расскажу о плате Arduino Pro Mini.

Это одна из самых простых и миниатюрных плат Ардуино. На ней только минимум компонентов: микроконтроллер, кварцевый резонатор, блокировочные конденсаторы, два светодиода и стабилизатор напряжения.

Преобразователя интерфейсов плата не содержит. Для подключения к компьютеру через интерфейс USB, в том числе для загрузки программы из Arduino IDE, необходимо использовать внешний USB-UART конвертер.

Размеры платы Arduino Pro Mini всего 18 x 33 мм, что позволяет применять ее в проектах критичных к габаритам электроники.

Плата поставляется без впаянных разъемов. Это дает возможность выбрать свой способ подключения платы: впаять разъемы или выполнить соединение пайкой проводов.

Естественно, простота и миниатюрные размеры платы отразились на ее стоимости. Это одна из самых дешевых плат Ардуино. На момент написания статьи (февраль 2017 г.) по моей партнерской ссылке плата Arduino Pro Mini с микроконтроллером ATmega328 стоит всего 180 руб.

Все вышесказанное делает привлекательным применение Arduino Pro Mini:

  • в проектах с ограниченными конструктивными размерами;
  • при отсутствии необходимости связи с компьютером;
  • при серийном выпуске;
  • при ограничениях на стоимость изделия.

Платы выпускаются в модификациях:

  • тип микроконтроллера ATmega168 или ATmega328;
  • напряжение питания 3,3 или 5 В.

В варианте с микроконтроллером ATmega168 объемы всех типов памяти (ОЗУ, FLASH и EEPROM) уменьшены в 2 раза.

В вариантах с питанием 3,3 В уменьшена тактовая частота с 16 до 8 мГц.

Читать еще:  Тест производительности браузеров

Характеристики платы Arduino Pro Mini.

Большей частью плата имеет такие же параметры, как и другие платы Ардуино с микроконтроллерами ATmega168/328.

Назначение выводов платы Arduino Pro Mini.

Питание.

Arduino Pro Mini может получать питание следующими способами.

  • От внешнего стабилизированного источника питания напряжением 5 В. В этом случае используется вывод VCC.
  • От USB порта компьютера через преобразователь интерфейсов USB-UART, подключенный к 6 контактному разъему платы. Используется вывод VCC 6 контактного разъема.
  • От внешнего не стабилизированного источника питания напряжением до 12 В. В этом случае используется встроенный стабилизатор напряжения платы. Питание подключается через вывод RAW.

Схема питания платы Arduino Pro Mini выглядит так.

Перемычка SJ1 используется для отключения внутреннего стабилизатора платы в приложениях с низким энергопотреблением. На моем варианте платы этой перемычки нет.

В качестве стабилизатора напряжения питания микроконтроллера используется микросхема MIC5205. Это линейный стабилизатор с низким падением напряжения.

При внешнем питании платы через вывод RAW этот стабилизатор может быть использован для питания внешнего устройства через вывод VCC. Ток потребления ограничен нагрузочной способностью MIC5205 и не должен превышать 150 мА. Кроме того необходимо учитывать максимально-допустимую мощность рассеивания стабилизатора. По этой ссылке mic5205.pdf можно получить подробную информацию о MIC5205 и расчете максимальной мощности для этого стабилизатора.

Входы и выходы платы.

  • Все выводы, аналоговые или цифровые, могут работать в диапазоне от 0 до 5 В (от 0 до 3,3 В для модификации платы с питанием 3,3 В).
  • Для дискретного вывода в режиме выхода втекающий или вытекающий ток не должен превышать 40 мА. Суммарный ток выводов микроконтроллера должен быть не более 200 мА.
  • Все выводы микроконтроллера подключены к источнику питания через подтягивающие резисторы сопротивлением 20-50 кОм. Подтягивающие резисторы могут быть отключены программно.
  • Если на любой аналоговый или дискретный вход подать напряжение ниже 0 В или свыше 5 В (свыше 3,3 В для модификации с питанием 3,3 В), то оно будет ограничено защитными диодами микроконтроллера.

Сигналы с высоким напряжением и отрицательным напряжением должны подключаться к входам платы через ограничительные резисторы. В противном случае микроконтроллер обязательно выйдет из строя.

Цифровые выводы. У платы есть 14 цифровых выводов. Каждый из них может работать в режиме входа и выхода. Некоторые выводы еще имеют дополнительные функции.

Последовательный интерфейс UART: выводы 0(RX) и 1(TX). Используются для обмена данными по интерфейсу UART и загрузки программы в микроконтроллер из Arduino IDE. Плата не содержит преобразователя интерфейса USB-UART. Для связи с компьютером необходимо использовать внешний конвертер интерфейсов.

Входы внешних прерываний: выводы 2 и 3. К выводам могут быть подключены сигналы внешних аппаратных прерываний.

ШИМ: выводы 3,5,6,9, 10, 11. На этих выводах может быть сформирован аппаратным способом сигнал ШИМ. После сброса в системе установливаются параметры ШИМ: 8 бит, 500 Гц.

Интерфейс SPI: выводы 10 (SS), 11 (MOSI), 13 (SCK). Выводы аппаратного последовательного интерфейса SPI.

Интерфейс I2C: выводы 4 (SDA) и 5 (SCL). Сигналы аппаратного интерфейса I2C.

Светодиод: вывод 13. К этому выводу подключен светодиод общего назначения. Светится при высоком уровне сигнала на выводе 13.

Аналоговые входы: A0…A8. 6 или 8 аналоговых входов, предназначенных для измерения напряжения. Разрядность АЦП – 10 бит, что соответствует 1024 градациям сигнала. Время измерения порядка 100 мкс. Для сохранения точности выходное сопротивление источника сигнала не должно превышать 10 кОм.

RST. Сигнал сброса микроконтроллера. Низкий уровень приводит к перезагрузке системы. Вывод RST на 6 контактном разъеме имеет несколько другое назначение и используется при загрузке программы в микроконтроллер.

На плате есть 2 светодиода.

  • Светодиод красного свечения, индицирующий наличие питания микроконтроллера.
  • Светодиод зеленого свечения. Управляется программой и может использоваться для любых целей по выбору разработчика.

Принципиальная схема платы Arduino Pro Mini.

О цепях питания платы я уже рассказал, а больше пояснять нечего. Микроконтроллер включен по стандартной схеме, практические все его выводы непосредственно подключены к выводам платы.

Загрузка программы в плату Arduino Pro Mini.

На платах Ардуино со встроенным конвертером интерфейсов эта операция происходит очень просто. Плата подключается стандартным кабелем к USB порту компьютера, нажимается кнопка в Arduino IDE и программа автоматически загружается в плату.

С платой Arduino Pro Mini все сложнее. Некуда подключать стандартный USB кабель.

Как происходит загрузка программ в платы Ардуино из среды Arduino IDE.

При нажатии кнопки ”Загрузка” в Arduino IDE происходит компиляция скетча. О чем сообщает надпись “Компиляция скетча” в нижней части окна.

Затем автоматически появляется сообщение “Загрузка”.

В этот момент Arduino IDE инициирует импульс низкого уровня на выходе DTR. DTR это один из сигналов управления передачей данных COM порта. Обычно он формируется на выходе встроенного преобразователя интерфейсов USB-UART.

Во всех платах Ардуино сигнал DTR подключен к выводу сброса микроконтроллера через конденсатор емкостью 0,1 мкФ. Получается простейшая дифференцирующая цепочка с постоянной времени 1 мс.

У платы Arduino Pro Mini внутреннего конвертера интерфейсов нет, поэтому сигнал DTR выведен на 6 контактный разъем. Схема сброса от сигнала DTR для Arduino Pro Mini выглядит так.

Независимо от длительности импульса DTR на входе ”RESET” микроконтроллера будет сформирован короткий импульс сброса.

По любому сбросу микроконтроллер передает управление программе загрузчика. В течение примерно 1 секунды загрузчик ожидает связи с компьютером по протоколу STK500. Если данные от компьютера поступают, то происходит загрузка программы из Arduino IDE.

Если в течение секунды данные от компьютера не приходят, то управление передается пользовательской программе микроконтроллера. Так происходит, например, при включении питания. Секунду плата ожидает, не собираются ли в нее загружать данные, а затем выполняется уже загруженная программа.

Из всего вышесказанного становится понятно, что если плату Arduino Pro Mini подключить через полноценный конвертер интерфейсов с сигналами RXD, TXD и DTR, то загрузка будет происходит совершенно так же, как и в других платах Ардуино со встроенным преобразователем интерфейсов. Дополнительно можно использовать для питания платы сигнал 5 В интерфейса USB. Или 3,3 В для плат с питанием 3,3 В.

Для подключения внешнего преобразователя интерфейсов предназначен 6 контактный разъем платы Arduino Pro Mini (при необходимости его можно впаять). Разъем содержит все сигналы, необходимые для загрузки программы в плату.

Надо только учитывать, что на некоторых платах сигналы RXI и TXO 6 контактного разъема могут соответствовать сигналам RXD и TXD микроконтроллера, а могут и быть включены наоборот. Например, как на этой плате.

Лучше прозвонить цепи выводов RXI и TXO. На моей плате сигналы соответствуют. Схема подключения конвертера USB-UART к моей плате выглядит так.

Обратите внимание, что сигнал DTR надо подключать к выводу RST именно на 6 контактном разъеме. Он соединен с входом сброса микроконтроллера через дифференцирующий конденсатор. На плате есть еще один вывод RST. Он подключен непосредственно ко входу “RESET” микроконтроллера.

В качестве внешнего USB-UART конвертера можно использовать любой модуль, например, PL2303 USB-UART BOARD или модуль CH340. Не забудьте установить на компьютер драйвер для модуля преобразователя интерфейсов.

Беда в том, что большинство модулей – конвертеров интерфейсов не имеют на выходном разъеме сигнала DTR. Можно, конечно, припаять проводок к выводу DTR микросхемы конвертера. Практически на всех микросхемах преобразователей интерфейсов этот сигнал есть. Просто он не выведен на разъем модуля.

Другой способ – использовать кнопку ”RESET” платы Arduino Pro Mini.

При загрузке программы ее надо вовремя нажать. В момент, когда появилось сообщение ”Загрузка” в окне Arduino IDE необходимо кратковременно нажать эту кнопку. На это есть время примерно 1 секунда. В принципе это сделать несложно, но когда голова забита разработкой программы такая простая операция несколько напрягает.

В следующем уроке собираюсь начать новую большую тему – обмен данными между платами Ардуино.

Распиновка плат Arduino UNO и NANO

Contents

Приведены схемы плат Ардуино UNO и Ардуино NANO, указано назначение каждого вывода на плате. Также дана распиновка микроконтроллера Atmega328, расположенного на этих платах

Распиновка платы ардуино UNO

На плате UNO расположено 14 цифровых входов/выходов и 6 аналоговых входов, USB-разъем, разъем для подключения блока питания на 7-12 В, разъем ICSP, а также кнопка перезагрузки.


Здесь можно скачать схему платы .

Расшифровка цветового обозначения:

Здесь возле платы ардуино обозначено разными цветами:

— серый цвет — физический пин микроконтроллера Atmega328;

Читать еще:  Тест USB-кабелей для аудио: аудиофилия или аудиопаранойя? Подключение передней панели к материнской плате: схема Usb audio разъем.

— желтый цвет — номер порта, который управляется из программы;

— розовый цвет — номер выхода, который написан на самой плате;

— далее разным цветом указаны различные назначения портов;

Назначение и обозначения выводов:

VIN — питание от внешнего источника питания на 7-12 В (блок питания покупается отдельно, если он нужен).

USB — ардуионо можно подключать к компьютеру через USB-кабель (используется такой же кабель, как для подключения принтеров).

5V — через этот пин можно запитывать плату от источника питания на 5V, однако напряжение должно быть более-менее стабильным, поскольку оно подается непосредственно на микроконтроллер (минуя стабилизатор), и резкий скачек напряжения может вывести МК из строя.

3.3V — на этом пине будет висеть напряжение 3.3 В, которое формируется от внутреннего стабилизатора платы. Этот пин нужен для подключения некоторых внешних устройств, которым нужно именно 3.3 В, например некоторые ЖК-дисплеи. Однако максимальный ток вывода не должны превышать 50 мА.

AREF — опорное напряжение для аналоговых входов. Используется по необходимости, что указывается в функции analogReference().

IOREF — через этот вывод можно узнать рабочее напряжение микроконтроллера. Редко используется. На китайских платах этого вывода нет вовсе.

Reset — сброс микроконтроллера. Для сброса нужно подать низкий уровень на этот вход.

SDA, SCL — пины интерфейса TWI/I2C.

0. 13 — цифровые входы/выходы.

13 — вывод под номером 13 имеет одну особенность, на нем висит встроенный светодиод, который можно включить подав HIGH на этот вывод.

0 (RX), 1 (TX) — выводы порта UART (это тот же последовательный интерфейс Serial).

A1. A5 — аналоговые входы (но могут используется и в качестве цифровых)


Купить плату Arduino UNO по низкой цене можно по этой ссылке.

Распиновка платы ардуино Nano


Купить плату Arduino Nano по низкой цене можно по этой ссылке.

Распиновка микроконтроллера Atmega328

Иногда полезно иметь под рукой и схему самого микроконтроллера, который стоит на борту плат ардуино Uno и Nano. Вот его распиновка:

Arduino pro mini 168 распиновка. Распиновка плат ардуино Arduino board pinmaping

Распиновка (Pinout) платы показывает, какие пины за что отвечают. Микроконтроллер штука настолько универсальная, что большинство пинов имеют гораздо больше одной функции! Рассмотрим пины и интерфейсы платы на основе Arduino Nano, так как другие модели Ардуино имеют абсолютно точно такие же входы/выходы/интерфейсы, но просто в другом количестве.

Начнем с пинов, которых больше всего, это GPIO, с англ. General Purpose Input-Output, входы-выходы общего назначения, на плате они подписаны как D0D13 и A0A5. По картинке распиновки они называются PD*, PB* и PC*, (вместо звёздочки – цифра) отмечены тёмно-бежевым цветом. Почему “официально” они называются PD/PB/PC? Потому что пины объединены в пОрты по несколько штук (не более 8), на примере Нано есть три порта: D, B и C, соответственно пины так и подписаны: PD3 – Port D 3 – третий выход порта D. Это цифровые пины, способные выдавать логический сигнал (0 или VCC) и считывать такой же логический сигнал. VCC это напряжение питания микроконтроллера, при обычном использовании обычной платы Ардуино это 5 Вольт, соответственно это 5 вольтовая логика: 0V – сигнал низкого уровня (LOW), 5V – высокого уровня (HIGH). Напряжение питания микроконтроллера играет очень большую роль, об этом мы ещё поговорим. GPIO имеют несколько режимов работы: вход (INPUT), выход (OUTPUT) и вход с подтяжкой к питанию встроенным в МК резистором на 20 кОм (INPUT_PULLUP). Подробнее о режимах поговорим в отдельном уроке.

Все GPIO пины в режиме входа могут принять сигнал с напряжением от 0 до 5 вольт (на самом деле до 5.5 вольт, согласно даташиту на микроконтроллер). Отрицательное напряжение или напряжение, превышающее 5.5 Вольт приведёт к выходу пина или даже самого МК из строя. Напряжение 0-2.5 вольта считается низким уровнем (LOW), 2.5-5.5 – высоким уровнем (HIGH). Если GPIO никуда не подключен, т.е. “висит в воздухе”, он принимает случайное напряжение, возникающее из за наводок от сети (провода 220в в стенах) и электромагнитных волн на разных частотах, которыми пронизан современный мир.

GPIO в режиме выхода (OUTPUT) являются транзисторными выходами микроконтроллера и могут выдать напряжение 0 или VCC (напряжение питания МК). Стоит отметить, что микроконтроллер – логическое, а не силовое устройство, его выходы рассчитаны на подачу сигналов другим железкам, а не на прямое их питание. Максимальный ток, который можно снять с GPIO выхода ардуино – 40 мА. Если попытаться снять больше – пин выйдет из строя (выгорит выходной транзистор и всё). Что такое 40 мА? Обычный 5мм одноцветный светодиод потребляет 20 мА, и это практически единственное, что можно питать напрямую от Ардуино. Также не стоит забывать о максимальном токе со всех пинов, он ограничен 200 мА, то есть не более 10 светодиодов можно запитать от платы на полную яркость…

Интерфейсы

Большинство GPIO имеют дополнительные возможности, так как к ним подключены выводы с других систем микроконтроллера, с ними вы уже знакомы из предыдущего урока:

  • ADC (АЦП, аналогово-цифровой преобразователь) – зелёные подписи ADC* на распиновке
  • UART (интерфейс связи) – голубые TXD и RXD на распиновке
  • Выводы таймеров, они же ШИМ пины – светло-фиолетовые OC*A и OC*B, где * номер таймера
  • SPI (интерфейс связи) – голубые SS, MOSI, MISO, SCK
  • I2C (интерфейс связи) – голубые SDA и SCL
  • INT (аппаратные прерывания) – розовые INT0 и INT1, а также PCINT* – PinChangeInterrupt

Если про интерфейсы мы уже говорили, то АЦП, прерывания и выводы таймеров ещё не затрагивали.

ADC пины (с АЦП) помечены на плате буквой A. Да, пины A6 и A7 на плате Нано имеют только вход на АЦП и не являются GPIO пинами! АЦП – аналогово-цифровой преобразователь, позволяет измерять напряжение от 0 до VCC (напряжения питания МК) или опорного напряжения. На большинстве плат Ардуино разрядность АЦП составляет 10 бит (2^10 = 1024), что означает следующее: напряжение от 0 до опорного преобразуется в цифровую величину от 0 до 1023 (1024-1 так как отсчёт идёт с нуля). Опорное напряжение играет очень большую роль: при опорных 5V один шаг измерения АЦП составит 4.9 милливольта (0.00488 В), а при опорных 1.1В – 1.1 мВ (0.00107 В). Вся суть в точности, я думаю вы поняли. Если опорное напряжение установлено ниже напряжения питания МК, то оцифровывая напряжение выше опорного мы получим 1023. Подавая на АЦП напряжение выше 5.5 Вольт получим выгоревший порт. Подавать отрицательное напряжение также не рекомендуется. На ардуино есть несколько режимов опорного напряжения: оно может быть равно VCC (напряжению питания), 1.1V (от встроенного в МК стабилизатора) или получать значение с внешнего источника в пин Aref, таким образом можно настроить нужный диапазон и получить нужную точность. У других моделей Ардуино (например у Меги) есть и другие встроенные режимы. Опорное напряжение рекомендуется заводить на плату через резистор, например на 1 кОм. Для измерения напряжений выше 5.5 вольт необходимо использовать делитель напряжения на резисторах.

Таймеры (ШИМ)

Выводы таймеров: в микроконтроллере, помимо обычного вычислительного ядра, с которым мы работаем, находятся также “хардварные” счётчики, работающие параллельно со всем остальным железом. Эти счётчики также называют таймерами, хотя к таймерам они не имеют никакого отношения: счётчики буквально считают количество тиков, которые делает кварцевый генератор, задающий частоту работы для всей системы. Зная частоту генератора (обычно 16 МГц) можно с очень высокой точностью определять интервалы времени и делать что-то на этой основе. Какой нам прок от этих счётчиков? “Из коробки” под названием Arduino IDE мы имеем несколько готовых, основанных на таймерах инструментов (функции времени, задержек, измерения длин импульсов и другие).

В этой статье речь идёт о пинах и выходах, о них и поговорим: у каждого счётчика есть два выхода на GPIO. У нано (у МК ATmega328p) три счётчика, соответственно 6 выходов. Одной из возможностей счётчиков является генерация ШИМ сигнала, который и выводится на соответствующие GPIO. Для нано это D пины 5 и 6 (счётчик 0), 9 и 10 (таймер 1) и 3 и 11 (таймер 2). ШИМ сигналу посвящен отдельный урок, сейчас просто запомним, что с его помощью можно управлять яркостью светодиодов, скоростью вращения моторчиков, мощностью нагрева спиралей и многим другим. Но нужно помнить, что ограничение по току в 40 мА никуда не делось и питать от пинов ничего мощнее светодиодов нельзя.

Читать еще:  Почему не запускается the elder scrolls online. Первый запуск TES Online, настройка и русификация

Прерывания

Аппаратные прерывания позволяют процессору мгновенно переключаться на некий блок действий (функция обработчик прерывания) при изменении уровня сигнала на пине. Подробнее об этом, а также о PinChangeInterrupts поговорим в другом уроке.

Arduino Pro Mini — Характеристики, распиновка, описание платы

Arduino Pro Mini одина из самых миниатюрных плат семейства Arduino и может использоваться в готовых проектах. Разработана и производится SparkFun Electronics. Построена на микроконтроллере ATmega168, а позже вышла плата на базе микроконтроллера ATmega328. Платформа содержит 14 цифровых входов и выходов (6 из которых могут использоваться как выходы ШИМ), 6 аналоговых входов, резонатор, кнопку перезагрузки и отверстия для монтажа выводов. Блок из шести выводов может подключаться к кабелю FTDI или плате-конвертеру Sparkfun для обеспечения питания и связи через USB. Arduino Pro Mini — это Arduino Nano без встроенного преобразователя FTDI FT232RL (или CH340G).
Существует две версии платформы Pro Mini. Одна версия работает при напряжении 3.3 В и частоте 8 МГц, другая при напряжения 5 В и частоте 16 МГц.

Плата поставляется без впаянных разъемов. Это дает возможность выбрать свой способ подключения платы: впаять разъемы или выполнить соединение пайкой проводов.

Характеристики Arduino Pro Mini

Arduino Pro Mini ATmega168 3.3V/8MHz 5V/16MHz

Принципиальная схема

Arduino Pro Mini ATmega328 3.3V/8MHz 5V/16MHz

Принципиальная схема

Распиновка Arduino Pro Mini



Каждый из 14 цифровых выводов Pro, используя функции pinMode() , digitalWrite() , и digitalRead() , может настраиваться как вход или выход. Выводы работают при напряжении 3,3 В. Каждый вывод имеет нагрузочный резистор (стандартно отключен) 20-50 кОм и может пропускать до 40 мА. Некоторые выводы имеют особые функции:

  • Последовательная шина: 0 (RX) и 1 (TX). Выводы используются для получения (RX) и передачи (TX) данных TTL. Данные выводы имеют соединение с выводами TX-0 и RX-1 блока из шести выводов.
  • Внешнее прерывание: 2 и 3. Данные выводы могут быть сконфигурированы на вызов прерывания либо на младшем значении, либо на переднем или заднем фронте, или при изменении значения. Подробная информация находится в описании функции attachInterrupt() .
  • ШИМ: 3, 5, 6, 9, 10, и 11. Любой из выводов обеспечивает ШИМ с разрешением 8 бит при помощи функцииanalogWrite() .
  • SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). Посредством данных выводов осуществляется связь SPI, которая, хотя и поддерживается аппаратной частью, не включена в язык Arduino.
  • LED: 13. Встроенный светодиод, подключенный к цифровому выводу 13. Если значение на выводе имеет высокий потенциал, то светодиод горит.

На платформе Pro Mini установлены 6 аналоговых входов, каждый разрешением 10 бит (т.е. может принимать 1024 различных значения). Четыре из них расположены на краю платформы, а другие два (входы 4 и 5) ближе к центру. Измерение происходит относительно земли до значения VCC. Некоторые выводы имеют дополнительные функции:

  • I2C: A4 (SDA) и A5 (SCL). Посредством выводов осуществляется связь I2C (TWI), для создания которой используется библиотека Wire.

Существует дополнительный вывод на платформе:

  • Reset. Низкий уровень сигнала на выводе перезагружает микроконтроллер. Обычно применяется для подключения кнопки перезагрузки на плате расширения, закрывающей доступ к кнопке на самой плате Arduino.

Питание платы

Arduino Pro Mini может получать питание: через кабель FTDI FT232RL (или CH340G), или от платы-конвертора, или от регулируемого источника питания 3.3 В или 5 В (зависит от модели платформы) через вывод Vcc, или от нерегулируемого источника через вывод RAW.

Выводы питания

  • RAW. Для подключения нерегулируемого напряжения.
  • VCC. Для подключения регулируемых 3.3 В или 5 В.
  • GND. Выводы заземления.

Подключение платы Arduino Pro Mini

Для соединения с компьютером используется специальный кабель FTDI FT232RL (или CH340G), содержащий преобразователь интерфейса USB–USART. Микроконтроллер содержит интерфейс USART, его сигналы RX и ТХ выведены на торцевую часть платы. Специальный кабель подключается к этим входам Arduino Pro Mini, а также к контактам VCC и GND. При этом питание 5 В поступает в модуль от персонально компьютера. Существуют соединители, имеющие также очень важный контакт DTR. Сигнал на этом контакте автоматически формирует сигнал сброса перед обновлением программы в МК. Без сброса в нужный момент в начале записи программы невозможно записать новую программу. Следует учитывать порядок подключения контактов. Правильно соединение USART выполняется по схеме:

Ардуино Про Мини: распиновка, характеристики

Arduino Pro Mini ► по размерам сравнима с флэшкой. Рассмотрим схему платы Arduino Pro Mini ATmega328/168, распиновку, характеристики и способы прошивки.

Плата Arduino Pro Mini по размерам сравнима с флэшкой, но при этом имеет 14 полноценных портов ввода – вывода, 6 и которых – это аналоговые PWM порты. Платформа построена на базе микроконтроллера ATmega168 с частотой 8 МГц или 16 МГц (ATmega328). Рассмотрим подробнее схему платы Ардуино Про Мини, распиновку портов, характеристики и способы программирования (прошивки) данной модели.

Arduino Pro Mini: распиновка платы

Характеристики Arduino Pro Mini 5V не отличаются от платы Arduino Nano. Основное различие состоит в отсутствии микросхемы для прошивки Pro Mini по USB-UART. Связь с ПК производится по кабелю FTDI или с помощью дополнительной платы Sparkfun. Благодаря этому размеры платы более компактные, что позволяет использовать платформу в готовых мини-проектах, где важны небольшие габариты комплектующих.

Распиновка Arduino Pro Mini ATmega328 / ATmega168

Нумерация портов и их назначение полностью дублируют плату Arduino UNO r3. Из 14 портов ввода – вывода, 6 портов могут работать в режиме ШИМ с разрешением 8 бит. Последовательная шина UART находится на портах 0 (RX) и 1 (TX), связь по протоколу I2C на Pro Mini Arduino с LCD дисплеем осуществляется на аналоговых портах с дополнительными функциями в работе: порт A4 (SDA) и порт A5 (SCL).

Характеристики Arduino Pro Mini

  • Микроконтроллер: ATmega168 или ATmega328
  • Тактовая частота: 8 МГц и 16 МГц
  • Входное напряжение питания: 3,3-12 В или 5-12 В
  • Напряжение логических уровней: 3,3 или 5 В
  • Портов ввода-вывода общего назначения: 20
  • Максимальный ток с пина ввода-вывода: 40 мА
  • Портов с поддержкой ШИМ: 6
  • Портов, подключённых к АЦП: 8
  • Разрядность АЦП: 10 бит
  • Flash-память: 16 кб
  • SRAM-память: 1 кб
  • EEPROM-память: 512 байт
  • Габариты платы: 33×18 мм

Arduino Pro Mini: схема платы

Arduino Pro Mini: питание платы, порты

Платы Arduino Pro выпускаются с двумя вариантами питания – 3,3 Вольта для микроконтроллера с частотой 8 МГц и 5 Вольт для микроконтроллера с частотой 16 МГц. Обе версии подключаются к источнику питания через кабель FTDI или плату Sparkfun. Стабилизированное напряжение 3,3 В или 5 В (в зависимости от модели) можно подать на порт VCC, не регулируемый источник подключается к порту RAW.

Схема портов на плате Arduino Pro Mini ATmega168 / ATmega328

Pro Mini : питание от внешнего источника

5V – на пин подается 5 В от внутреннего стабилизатора
3.3V – на пин подается 3,3 В, можно использовать для подключения устройств
GND – пин для вывода земли
VIN – пин для подключения внешнего источника питания
IREF – пин для информирования о рабочем напряжении платы

Arduino Pro Mini: прошивка, программирование

Микропроцессор Arduino Pro Mini разработан со встроенным загрузчиком, т.е. запись скетчей в плату производится без использования программаторов. Это значительно облегчает работу с платой, особенно новичкам. Прошивка Arduino Pro Mini ATmega328 производится в среде Arduino IDE 1.8, которую можно скачать на сайте разработчика www.arduino.cc. Дополнительные драйвера для Pro Mini Arduino не требуются.

Подключение Pro Mini для прошивки через USB

Pro Mini поддерживает три типа памяти:

Flash–память объемом 16 кБ, используется для хранения прошивки. Когда в контроллер записывается программа, она сохраняется именно во Flash–память. Чтобы очистить Flash–память следует загрузить пустой скетч (программу).

SRAM — это оперативная память объемом 1 кБ на Arduino Pro Mini. Здесь хранятся переменные, создаваемые в скетче. SRAM — это энергозависимая память, при отключении внешнего источника питания — данные удалятся.

EEPROM — это энергонезависимая память в 512 байт. Сюда можно сохранять данные, которые при отключении от источника питания не удалятся. Минус данной памяти в ограничении циклов перезаписи — не более 100 тысяч раз.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector