62 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Обзор блока питания Antec VP700P: акцент на главном. Выбор БП по визуальным признакам – руководство Версия atx12v 2.3 в чем отличие 2.4

Содержание

Обзор и тест блока питания Antec VP650P

Antec старается максимально расширить линейку источников питания наполняя каждую серию все новыми моделями. VP серия рассчитана прежде всего на рядового покупателя, которому требуется надежный блок питания по разумной цене.

Данная модель базируется на платформе Delta Electronics, что должно свидетельствовать о высоком качестве и надежности источника. Следует отметить, что практика выпуска под своим брендом устройств сторонних OEM производителей не является чем-то необычным и практикуется повсеместно.

Технические характеристики

  • Производитель: Antec;
  • Модель: VP650P;
  • Мощность: 650 Вт;
  • Стандарт: ATX12V 2.3;
  • PFC: активный;
  • Охлаждение: 120 мм вентилятор;
  • Тип разъема для материнской платы: 20+4-pin;
  • Коннекторы питания мат. платы: 4+4-pin;
  • Коннектор питания видеокарт: 2×8(6+2)-pin;
  • Количество разъемов Molex: 4;
  • Количество разъемов SATA: 6;
  • Количество разъемов Floppy:1;
  • Защита от перенапряжения: есть;
  • Защита от перегрузки: есть;
  • Защита от короткого замыкания: есть;
  • Кабель менеджмент: нет;
  • Габариты: 86x150x140 мм;
  • Вес: 1.9 кг;
  • Цена: 2600 руб.

Упаковка и комплектация

Уже по рассмотренным ранее моделям блоков питания компании Antec, можно было убедиться в весьма незатейливом оформлении упаковок. Источник питания VP650P здесь не стал исключением.

На обратной стороне вы найдете все необходимые сведения об устройстве.

На боковой стороне можно ознакомиться с табличкой коннекторов и выходными параметрами источника.

Учитывая последовательность Antec в своих предпочтениях, не приходится удивляться неизменности защитных мер при транспортировки.

  • Внутри вы обнаружите:
  • Шнур питания;
  • Винты для крепления;
  • Документацию.

Внешний вид устройства

Строгие черные цвета присущи и данной модели. Из ярких и полезных моментов можно отметить расположенную на торце таблицу нагрузочных характеристик и нанесенный на корпус логотип производителя. Подобный блок питания справится с любой однопроцессорной видеокартой.

Система охлаждения защищена перфорированной решеткой.

На задней части специальные отверстия позаботятся о своевременном отводе тепла. Кроме того, здесь традиционно расположен разъем для питания и тумблер включения.

Все кабеля, кроме ATX 24-pin, лишены оплетки, что безусловно говорит об экономии. Количество разъемов для периферии удовлетворит нужды большинства потребителей. Antec VP650P рассчитан на установку в небольшие корпуса фор-фактора MidiTower, ограничения связаны с длиной проводов.

Корпус состоит из двух цельных частей, подобный дизайн хорошо подходит для быстрого доступа к компонентам. На одной из внутренних стенок можно заметить непокрашенную часть, но на внешнем виде это никак не отразится.

Для поддержания рабочей температуры установлен YATE LOON D12SH-12, это 120 мм вентилятор со скоростью вращения не превышающей 2200 об/мин. Обратной стороной высокой эффективности в данном случае является шум.

Схемотехника

Перейдем к рассмотрению схемотехнических решений. Далее приведен общий вид схемы блока питания со снятой крышкой.

На верхней стороне основной платы элементов не много, зато на нижней стороне виден очень плотный монтаж деталей поверхностного монтажа. Многие выводные элементы паялись вручную.

Оптроны обратной связи выполнены в SMD корпусах и обеспечивают гальваническую развязку выходных напряжений от высоковольтной части.

Фильтр сетевых помех конструктивно разбит на две части — конденсаторы подавления несимметричных помех припаяны прямо на выводы сетевой вилки, что делать не рекомендуется, но допустимо. Части входного фильтра соединены между собой проводами, продетыми в ферритовое колечко, которое выполняет функцию защиты от высокочастотных выбросов. Остальная часть фильтра размещена на основной плате: два синфазных дросселя, намотанных на зеленых сердечниках, несколько серых прямоугольных Х-конденсаторов и несколько синих круглых Y-конденсаторов. Для защиты от вибрации, некоторые детали залиты силиконовым герметиком.

Далее видим сдвоенный операционный усилитель LM393 и DWA106. Информации на DWA106 найти не удалось, но можно предположить, что вместе они выполняют роль монитора параметров выходных напряжений источника питания.

Управление основным преобразователем и корректором коэффициента мощности (ККМ/PFC) осуществляется специализированным ШИМ-контроллером FAN4800.

Конденсатор выходного фильтра ККМ используется стандартный, на 85С. Если тепло будет плохо отводиться из корпуса компьютера, есть риск быстрой деградации этого элемента.

Конденсатор выходного фильтра источника питания собственных нужд (ИПСН). Использование подобных конденсаторов положительно сказывается на итоговой стоимости устройства.

Трансформаторы выполнены качественно. Нигде ничего не выпирает и все сделано аккуратно.

Выходные фильтры выполнены раздельно — установлен дроссель групповой стабилизации (черный тороидальный сердечник) для шин +5В и +12В и отдельный дроссель (синий тороидальный сердечник) для +3,3В. Остальные индуктивности фильтров намотаны на черных ферритовых стержнях.

Силовые выпрямительные диоды Шоттки STPS40M60CT, как и остальные элементы на радиаторах, установлены через изолирующую теплопроводящую прокладку.

Источник питания собственных нужд выполнен на специализированной микросхеме обратноходового ШИМ-контроллера серии TinySwitch3 TNY278.

Тестирование

Итак, стоит задача измерить ток порядка 20А тестером MY-62, у которого верхний предел 10А. Для этого, разобьем нагрузку на две части и будем измерять ток в той части, где он точно не превысит 10А. Зная соотношение номиналов нагрузок, суммарный ток будет рассчитан. В качестве нагрузки применим керамические резисторы типа SQP, прижмем их через термопасту к большому радиатору и всю конструкцию положим в тазик с водой, так, чтобы иглы радиатора были частично погружены в воду, а до плоской части радиатора вода не доставала. Это позволит нам ненадолго обмануть физику и рассеять гораздо больше мощности, чем при использовании воздушного охлаждения.

По результатам проверки блока питания можно сказать, что параметры источника укладываются в заявленные характеристики. Но там, где есть выбор между ценой и качеством, выбирается цена, пример тому конденсаторы выходного фильтра ИПСН и ККМ. Применение элементов поверхностного монтажа повышает надежность, так как исключает ситуацию случайного касания элементов друг с другом. В данном устройстве используются стандартные схемотехнические решения, что положительно сказывается на общей надежности и стоимости источника.

Заключение

Чистая эффективность – такими словами можно охарактеризовать серию VP и участника данного обзора. При покупке блока питания Antec VP650P выигрывает в большей степени потребитель, при этом убедиться в надежности вашего выбора поможет 2-х летний гарантийный срок. Производитель постарался максимально снизить цену, но не в ущерб качеству и надежности.

  • Качество сборки и компонентов;
  • Высокая стабильность работы при полной нагрузке;
  • Низкий уровень шума при малой нагрузке;
  • Хороший показатель КПД;
  • Цена.
  • Высокий уровень шума при полной нагрузке;
  • Снабжение защитной оплеткой только одного кабеля;
  • Отсутствие кабеля менеджмента.

Выражаем благодарность компании Antec за предоставленный на тестирование образец Antec VP650P.

Обзор блока питания Antec VP700P: акцент на главном. Выбор БП по визуальным признакам – руководство Версия atx12v 2.3 в чем отличие 2.4

Внимание!

  • В этой теме выбираем блок питания для компьютера, решаем явные проблемы с блоком питания, а так же определяем достаточно ли мощности для вашего компьютера. Остальные комплектующие в соответствующих темах.
  • Если компьютер собираете для игр, обсуждение необходимо вести в теме Сборка Игрового ПК
  • Если компьютер собираете для работы, обсуждение необходимо вести в теме Сборка не игрового ПК / Компьютер для работы
  • Если нужно собрать максимально дешевый компьютер, то обсуждение в теме Сборка супербюджетного ПК
  • Вопросы по улучшению существующего компьютера в теме Апгрейд / Улучшение вашего ПК
  • Обсуждение в каком конкретно магазине купить компоненты для компьютера осуществляем в теме Где купить запчасти для ПК и прочей техники.
  • Проблемы с ПК — тут решаем возникшие неполадки с «железом» ПК
  • Как быстро собрать информацию о текущем оборудовании и показать её в теме

ˇВажно:Список рекомендуемых блоков питания с основными характеристиками.

1) — Разъем для подключения Флоппи-дисковода. Максимальная нагрузка на контакты — 2А. Суммарная мощность — 34 ватта
2) — Разъем «Molex» для подключения старых HDD CDDVD приводов периферии. Нагрузка на контакты — 11А, мощность — до 187 ватт на разъем полностью
3) — Разъем для подключения устройств с интерфейсом «SATA». На каждый провод выделено по три контакта в разъеме. Нагрузочные характеристики соответствую разъему «Molex»
4,5) — Разъем 6+2pin (8 pin с отсоединяемыми 2 пин для совместимости с разъемом 6 pin) и 6pin для подключения питания видеокарт. Совместим с видеокартами имеющими 8pin питание и 6pin — (два контакта не задействуются). Мощность нагрузки от 75 до 280 ватт (6pin) или от 150 до 430 ватт (8пин) в зависимости от примененных контактов — подробнее: Разъём дополнительного питания видеокарт PCI-E
6,7) — Разъем 8pin или разделяемый 8pin (4+4pin) для питания процессора. Нагрузка от 192 до 288 ватт для 4pin.
8) — 24-контактный основной разъём для подачи напряжения на материнскую плату. Может иметь отсоединяющиеся 4pin (20+4pin) для совместимости со старыми материнскими платами. Максимальная сумаарная нагрузка на разъем от 373 до 684 ватта в зависимости от примененных контактов.

Напряжения и допустимые отклонения:

Технологии и защиты:
OCP — Защита от перегрузок по току
OTP — Защита от перегрева
SCP — Защита от короткого замыкания
OVP — Защита от повышения напряжения
OPP/OLP — Защита от перегрузки силами микроконтроллера PWM
UVP — Защита от понижения напряжения
SIP — Защита от бросков напряжениятока
NLP – Возможность работы с нулевой нагрузкой

Сообщение отредактировал hrdCore — 08.08.19, 00:47

Материнка Gigabyte m61pme-s2p, процессор AMD Phenom II X4 925. видеокарта Gigabyte PCI-Ex GeForce GT 630 2048MB DDR3. и БП 400w
Потянет ли БП такую нагрузку?

Сообщение отредактировал Stel6max — 06.08.14, 14:03

220-230 Вт по 12V. Вам осталось узнать, сколько выдаёт БП по линии 12V.

СОБЕРИ САМ

Блоки питания: конструкция, форм-факторы и спецификации

Современные форм-факторы: EPS, TFX, CFX, LFX и Flex ATX

EPS/EPS12V

В 1998 году компании Intel, Hewlett-Packard, NEC, Dell, Data General, Micron и Compaq создали Server System Infrastructure (SSI) — отраслевую группу, которая должна была продвигать отраслевые форм-факторы, объединяющие различные серверные комплектующие, включая корпуса, блоки питания, материнские платы и другие компоненты. Идея состояла в том, чтобы разрабатывать сервера, где используются стандартные взаимозаменяемые комплектующие. И хотя данный материал не затрагивает серверные комплектующие, во многих случаях недорогой сервер выступает как настольный компьютер класса high-end, и многие высокопроизводительные компоненты, которые когда-либо находили применение на серверах, в дальнейшем доходили и до настольных пользовательских систем. Данный принцип особенно верен, когда разговор заходит о блоках питания.

Читать еще:  Мощный повер банк своими руками. Делаем красивый Power bank

В 1998 году группа SSI разработала спецификацию Entry-level Power Supply (EPS), в которой описан новый отраслевой форм-фактор блоков питания для серверов начального уровня, устанавливаемых в вертикальные корпуса типа Tower. Первоначально EPS был основан на форм-факторе ATX, но с некоторыми усовершенствованиями. Первым серьёзным усовершенствованием стало использование 24-контактного разъёма питания, который через какое-то время появился и в спецификации ATX12V, но произошло это несколько позднее — в 2003 году.

EPS также первоначально предложил использовать разъёмы Molex Mini-Fit с контактами High Current System (HCS), которые появились в стандарте ATX12V в марте 2005 года. EPS включал ныне устаревший 6-контактный разъём питания, 4-контактный разъём питания +12 В, разновидность 6-контактного разъёма для питания видеокарты — причём всё это появилось в стандарте EPS задолго до того, как дошло до форм-фактора ATX.

Первоначальная спецификация EPS использовала физический форм-фактор, идентичный ATX, но позднее форм-фактор EPS был расширен для обеспечения более высокой мощности, позволяя устанавливать блок питания с большей глубиной при необходимости. Стандарт ATX и первоначальная версия EPS имеют 86 мм в высоту и 150 мм в ширину при глубине 140 мм — это те же самые размеры, что использовались в БП стандартов LPX и PS/2. Позднее спецификация EPS допустила возможность использования более крупного блока питания с глубиной корпуса 180 мм и 230 мм. Большинство БП имели полноценную мощность 500 Вт и более, и были выполнены в форм-факторе EPS12V, так как было невозможно реализовать более высокую мощность, оставаясь в рамках габаритов стандарта ATX. Можно было бы подумать, что такие БП требовали специфического корпуса соответствующего форм-фактора, но на практике многие (если не большинство) полноразмерных корпусов ATX позволяли устанавливать более глубокие блоки питания без изменения формы салазок под БП на корпусе, особенно при использовании более коротких в длину оптических накопителей (так как один и более оптических накопителей, как правило, устанавливаются на одном уровне с блоком питания в корпусе).

Со временем спецификации блоков питания EPS/EPS12V были повышены и сейчас можно предположить, какие потенциальные усовершенствования могут быть реализованы в стандарте ATX. Сегодня основная разница между ATX и EPS относительно разъёмов питания заключается в том, что стандарт EPS12V предполагает использование двойного 8-контактного разъёма +12 V вместо 4-контактного в блоках питания стандарта ATX12V.

Двойной 8-контактный разъём +12 В, по-сути, эквивалентен двум 4-контактным разъёмам, которые заделаны вместе, и он используется в серверах начального уровня для питания нескольких процессоров. Конструкция такого разъёма на блоках питания позволяет подключить его к обычной материнской плате форм-фактора ATX, оставив свободными четыре дополнительных выхода.

Ещё одно (и последнее) существенное различие EPS12V и ATX12V заключается в том, что блок питания стандарта EPS может достигать в глубину 180 или 230 мм, в то время, как блок питания ATX имеет ограничение до 140 мм в глубину в соответствии с его спецификацией. Пример блока питания стандарта EPS12V приведён на следующей фотографии:

Данный блок питания стандарта EPS12V имеет глубину 230 мм и может использоваться вместо обычного БП ATX12V, если корпус позволяет его установить. БП стандарта EPS12V иногда называют «расширенным ATX», так как они имеют более вытянутый корпус. Если вы планируете использовать один из таких БП в стандартом корпусе ATX необходимо, чтобы вы предварительно удостоверились, что в вашем корпусе имеется дополнительное пространство, чтобы установить в него блок питания, имеющий глубину больше стандартного значения 140 мм. Совместимость разъёмов в данном случае не выступает как лимитирующий фактор по причине конструкции разъёма Molex Mini-Fit: вы можете подключить 24-контактный разъём от блока питания к разъёму для 20-контактного коннектора на материнской плате. Точно так же можно подключать и 8-контактный двойной коннектор +12 V к обычному гнезду +12 В на материнской плате ATX. Таким образом, если вам позволяет свободное пространство внутри корпуса ATX, мы можете установить БП стандарта EPS12V, чтобы получить более высокую мощность.

TFX12V

Блок питания стандарта TFX12V (Thin Form Factor) впервые представлен компанией Intel в апреле 2002 года и спроектирован для систем форм-фактора SFF объёмом около 9-15 литров, прежде всего таких, где используются низкопрофильные корпуса, соответствующие спецификации SFF, и материнские платы форм-факторов microATX, FlexATX или Mini-ATX. Относительно БП ATX и SFX форма TFX12V более вытянута в длину и имеет наклон, что позволяет проще устанавливать такой БП в низкопрофильные корпуса. Размеры форм-фактора TFX12V отражены на следующей схеме:

БП стандарта TFX12V спроектирован таким образом, чтобы обеспечивать выходную мощность 180-300 Вт, что наиболее соответствует потребностям компактных систем, в которых планируется его использование. Блок питания TFX12V оснащён 80-мм вентилятором, закреплённым на боковой стороне внутри блока питания и имеющим встроенный термостат, что обеспечивает бесшумное и эффективное охлаждение (скорость вращения зависит от температуры внутри корпуса). Симметричная система позволяет при монтаже БП внутри корпуса выбирать сторону, к которой будет обращён вентилятор, что обеспечивает максимально эффективное охлаждение и гибкость — вы можете развернуть блок питания, учитывая особенности конструкцию корпуса.

В отличие от блоков питания, выполненных в форм-факторе SFX, стандартизованы только физические габариты БП TFX12V. Блоки питания TFX12V также всегда включали 4-контактный разъём +12 В с тех пор, как стандарт появился в апреле 2002 года (в это же время разъём +12 В появился в БП, имеющих другие форм-факторы). В версии TFX12V 1.2 (апрель 2003) был добавлен в качестве опции разъём питания Serial ATA, тогда как версия TFX12V 2.0, представленная в феврале 2004, сделала коннекторы питания SATA обязательными для всех БП, а основной 20-контактный разъём питания был заменён на 24-контактный. Ревизия 2.1 (июль 2005) включает лишь незначительные отличия от предшествующей версии.

CFX12V

Блоки питания форм-фактора CFX12V (Compact Form Factor) первоначально были представлены компанией Intel в ноябре 2003 года и предназначены для систем среднего размера стандарта BTX (Balanced Technology Extended) объёмом 10-15 литров, в которых используются материнские платы microBTX или picoBTX.

Блоки питания CFX12V разрабатывались для обеспечения выходной мощности 220-300 Вт, что вполне соответствует потребностям средних по размеру систем. БП CFX12V включает 80-мм вентилятор, закреплённый на задней стенке и оснащённый термостатом, что обеспечивает эффективную и тихую работу, так как скорость вращения регулируется в зависимости от температуры внутри корпуса. Форма такого блока питания имеет выступ, что позволяет более эффективно использовать пространство внутри корпуса, уменьшая общий размер системы. Размеры блока питания CFX12V показаны на схеме, приведённой ниже:

Блоки питания CFX12V изначально включали 4-контактный разъём +12 В, как только данный стандарт был представлен в ноябре 2003 года (позднее такие же разъёмы стали распространены в более популярных форм-факторах БП). Блок питания TFX12V также включал основной 24-контактный разъём для материнской платы и разъёмы питания для устройств Serial ATA. Текущая ревизия CFX12V 1.2, представленная в 2005 году, имеет лишь незначительные отличия от предшествующей версии, включая использование разъёмов HCS.

LFX12V

Впервые стандарт LFX12V (Low Profile Form Factor) был представлен компанией Intel в апреле 2004 года. Он разрабатывался для ультракомпактных настольных систем, имеющих объём 6-9 литров, прежде всего для использования с материнскими платами форм-факторов picoBTX и nanoBTX.

Блок питания разрабатывался для обеспечения выходной мощности 180-260 Вт, что более чем достаточно для потребностей миниатюрных систем. Блок питания LFX12V включает 60-мм вентилятор, что на 20 мм меньше относительно спецификации CFX12V. Вентилятор подобен своему собрату в БП CFX12V и, как правило, дополняется термостатом, что обеспечивает контроль скорости вращения для обеспечения оптимального баланса между шумом, который производит система, и эффективностью охлаждения. Форма блока питания выполнена таким образом, чтобы оптимально использовать пространство внутри корпуса, что позволяет получить более компактную платформу. Размеры типичного блока питания LFX12V отражены на следующей схеме:

Все блоки питания , выполненные в форм-факторе LFX12V, оснащены главным 24-контактным разъёмом питания для материнской платы, дополнительным 4-контактным разъёмом +12 В и коннекторами питания Serial ATA. Текущая спецификация LFX12V 1.1 представлена в апреле 2005 года и имеет незначительные усовершенствования относительно предыдущей версии.

Flex ATX

Компания FSP (Fortron Source Power), один из крупнейших производителей блоков питания, в 2001 году впервые представила свои наработки, которые были впоследствии объединены в форм-фактор Flex ATX как один из основных проприетарных стандартов настольных систем компактного размера (SFF) и тонких серверов (1U).

Данные блоки питания получили распространение в платформах Shuttle, но также использовались у других системных интеграторов, таких как HP/Compaq, IBM, SuperMicro и т.д.

Предприняв попытку превратить данный форм-фактор в официальный стандарт, компания Intel представила форм-фактор Flex ATX как часть ревизии 1.1 и более поздних версий в документе «Руководство по разработке блоков питания для настольных систем» («Power Supply Design Guide for Desktop Platform Form Factors»), опубликованном в марте 2007 года (данный документ доступен на сайте www.formfactors.org). Форм-фактор Flex ATX также часто называют блоками питания 1U (one unit), так как он используется в большинстве серверных корпусов стандарта 1U.

Блоки питания Flex ATX, подобно представленному на рисунке, разработаны таким образом, чтобы обеспечить номинальную выходную мощность от 180 до 270 Вт, что идеально соответствует запросам компактных систем. Стандарт Flex ATX предполагает использование одного или двух вентиляторов диаметром 40 мм, однако, предусмотрена возможность использовать более крупные вентиляторы, которые при этом располагаются горизонтально. Также существуют и модели с пассивным охлаждением.

БП стандарта Flex ATX включает 20-контактный, либо 24-контактный основной разъём питания материнской платы, а также 4-контактный коннектор +12 В. Они также включают разъёмы для подключения дисковых накопителей, современные реализации Flex ATX оснащены разъёмом питания устройств Serial ATA.

Правильное питание — залог здоровья. Выбираем блок питания. Часть 1. Практикум

Оглавление

Приведем небольшой пример. Если вы собираетесь покупать автомобиль, то вы прекрасно понимаете, что собираетесь использовать его прежде всего в качестве средства передвижения. Для этого машине нужно качественное топливо. В противном случае вам не избежать дорогостоящего ремонта. С компьютером происходит все то же самое. Для стабильной работы ему нужно электрическое питание. Выходит, что «неофициально» блок питания является важнейшим элементом любого десктопа.

В данной статье мы постараемся доказать, что покупка дешевых «кормушек» может привести к нежелательным последствиям, а также развенчать некоторые мифы, буквально ставящие пользователей в тупик.

Читать еще:  Nubia EP-NX008 - Наушники громкости высокой точности. Непредсказуемые наушники NUBIA HP1001

Блок питания — не роскошь. Но и не устройство, которым можно пренебречь!

Конструкция блока питания

Так как сейчас доминирующим форматом блоков питания является ATX, то мы будем рассматривать именно его. Подготавливая этот материал, мы не руководствовались желанием показать вам углубленную структуру современных БП, так как вытекающий из этого объем информации может просто-напросто отбить у вас всякий интерес к чтению.

Любой блок питания условно можно разделить на несколько функциональных частей: фильтр электромагнитных помех, выпрямитель, схема APFC, дежурный источник питания, инвертор, выпрямитель и фильтр выходных напряжений, схема защиты и выключения, ШИМ-контроллер. Также в последнее время все чаще в современных «кормушках» встречаются отдельные схемы управления скоростью вращения вентилятора. Эти узлы в той или иной мере взаимосвязаны друг с другом и расположены на печатной плате, прикрученной к днищу корпуса.

Структурная схема блока питания

В качестве примера мы использовали фотографию Thermaltake TR2 550W — недорогого, но популярного в России блока питания.

Компонентная база Thermaltake TR2 550W

Элементы Thermaltake TR2 550W: сетевой разъем (1), Х-конденсатор сетевого фильтра (2), предохранитель входной цепи (3), варистор (4), Х-конденсатор низкочастотного фильтра (5), дроссели низкочастотного фильтра (6), Y-конденсаторы низкочастотного фильтра (7), диодный мост (8), два полевых транзисторы APFC (9), быстрый диод APFC (10), электролитический конденсатор APFC (11), дроссель APFC (12), модуль управления APFC/PWM (13), согласующий трансформатор инвертора (14), радиатор с двумя силовыми ключами инвертора (15), модуль управления источника дежурного питания с ШИМ-драйвером и полевым транзистором (16), импульсный трансформатор источника дежурного напряжения (17), импульсный трансформатор главного инвертора (18), диод Шоттки источника дежурного напряжения (19), электролитический конденсатор фильтра ИДН (20), оптроны обратной связи (21), диод Шоттки шины +3,3V (22), выпрямительные диоды шины +12V (23), радиатор охлаждения вторичной цепи (24), супервизор (25), разъем подключения термодатчика (26), электролитические конденсаторы высокочастотного фильтра (27), биполярный транзистор для управления скоростью вращения вентилятора (28), плата для подключения отстегивающихся кабелей (29), дроссель групповой стабилизации +12V и +5V (30).

EMI-фильтр

На входе БП расположен фильтр ЭМП (электромагнитных помех). Так как компьютерный блок питания является импульсным, он генерирует высокочастотные шумы в сеть.

Существуют две составляющие электромагнитной помехи: синфазная и дифференциальная. Синфазная помеха не связана с заземлением и проходит по линии питания. Дифференциальная появляется между одним из проводов сети и «землей». Для подавления первой составляющей используются Х-конденсаторы и дроссели с встречными обмотками, для второй — Y-конденсаторы и проходные дроссели. Обычно конденсаторы встречаются как на входном разъеме питания 220 В, так и на плате, образуя фильтр кондуктивных шумов.

Для уменьшения излучаемых помех служит сам корпус блока питания, изготовленный из металлических сплавов. Здесь же расположен варистор для защиты первичной части БП от перенапряжения, а также предохранитель, разрывающий цепь при коротком замыкании и/или перегрузке.

Выпрямитель

Затем отфильтрованный переменный ток преобразуется в постоянный с помощью выпрямительного диодного моста, как правило, прикрепленного к радиатору. В дешевых блоках питания используются четыре обычных диода, образующих мост, что сказывается на использовании свободного пространства на плате и надежности.

Инвертор

Инвертор является главным силовым преобразователем любого блока питания. Он состоит из трансформатора, согласующего каскада, ШИМ-микросхемы и силовых ключей. Управляющая микросхема в последнее время перекочевала в комбо-модуль PWM+APFC, представляющий собой дочернюю плату, однако существует еще достаточно БП, где она представлена в отдельном виде. Суть ее работы довольно проста: она регулирует время открытого состояния силовых транзисторов, путем подачи сигналов на их затворы. Грубо говоря, чем дольше открыт ключ, тем больше энергии передаст трансформатор. Работают транзисторы попарно (когда один открыт, другой закрыт, и наоборот), так как в большинстве своем инверторы — двухтактные. И делается это десятки, а то и сотни тысяч раз в секунду.

Выходной выпрямитель и узел фильтрации

Блок выпрямителей и фильтрующих элементов как правило состоит из диодов Шоттки, электролитических конденсаторов и дросселя групповой стабилизации. В разных БП по-разному реализована элементная база, и вышесказанное необязательно является примером. В классическом исполнении напряжения 12 В, 5 В и 3,3 В снимаются со вторичных обмоток импульсного трансформатора и выпрямляются своими диодными сборками.

В последнее время диоды активно заменяются полевыми транзисторами, в виду чего снижаются потери и вторичная цепь напрочь лишается радиаторов охлаждения. К тому же «вторичкой» осталась только 12 В, которая является несущей шиной вторичного напряжения. От нее непосредственно формируются +3,3 В и +5 В.

Защитный узел

Схема защиты в настоящее время реализована на микросхеме супервизора. Она постоянно мониторит выходные напряжения +3,3V, +5V и +12V и в случае выхода значений за пределы снимает сигнал Power Good, тем самым завершая работу компьютера. Основными ее функциями является защита от перегрузки, а также пониженного и повышенного напряжения.

Разъемы блока питания

Все коннекторы компонентов компьютера унифицированы, поэтому распиновка разъемов блоков питания также стандартная. На изображении ниже вы можете увидеть расположение отдельных гнезд в соответствии со стандартом ATX. Слева расположен 20-контактный коннектор, поддерживаемый бюджетными материнскими платами, а справа — более распространенный 24-пиновый. Как видно, отличаются они лишь наличием дополнительных проводов питания +12V, +5V, +3,3V и «земли».

FSP ATX-400PNR дешевый БП от именитого производителя

Ранее я бегло описывал блок питания FSP ATX-450PNR на 450W, сегодня более подробно опишу 400 Вт блок питания FSP ATX-400PNR. Они очень похожи, как внешне, так и внутренне. Поэтому не буду останавливаться на внешности сегодняшнего БП, затрону лишь этикетку и выходные провода с разъемами. Вес блока питания FSP ATX-400PNR составляет 1 кг 225 грамм.

Этикетка: на ней логотип производителя — FSP Group INC. Название модели ATX-400PNR. Выходные напряжения: 400W

+12V2 = 13.0A (YEL/BLACK)

(+3.3V & +5V = 130W Max)

(+12V1 & +12V2 = 324W Max)

Как видим, разница между 450 Вт небольшая. но она есть, по крайней мере, на этикетке.

Смотрим выходные провода и разъемы. Они идентичны с FSP ATX-450PNR, по количеству разъемов, по длине и толщине проводов. Итак, имеется, длина проводов указана вместе с разъемами):

Разъем 20+4 питания материнской платы — длина 350 мм

Дополнительный 4 контактный разъем питания CPU — 350 мм

Два разъема Molex — 400 + 160 мм

Два разъема Molex и один FDD — 290 + 160 + 160 мм

Два SATA разъема — 450 + 160 мм

Толщина проводов — 20AWG максимум.

Примечание 1: в интернете часто в описании блока питания FSP ATX-400PNR указывается наличие одного 6 контактного разъема для дополнительного питания видеокарт — в моем экземпляре такового разъема нет.

Примечание 2: провода линии +12V1 желтого цвета, провода линии +12V2 желтого с черной полосой и они идут только на 4 контактный разъем питания CPU.

+ Щелкните по рисунку, чтобы увеличить!

+ Щелкните по рисунку, чтобы увеличить!

+ Щелкните по рисунку, чтобы увеличить!

+ Щелкните по рисунку, чтобы увеличить!

+ Щелкните по рисунку, чтобы увеличить!

+ Щелкните по рисунку, чтобы увеличить!

+ Щелкните по рисунку, чтобы увеличить!

Вскрываем блок питания. Вентилятор тот же самый. Корпус сделан из стали толщиной 0,6 мм. Электроника внутри FSP ATX-400PNR — это полная копия FSP ATX-450PNR (или правильнее наоборот). Чем они отличаются, откуда FSP взяла дополнительные 50 Вт мощности на другом блоке питания?

Входные фильтры распаяны полностью. Предохранитель в стеклянном корпусе заключен в термоусадочную трубку (вообще, очень многие детали закрыты такими трубками, иногда даже двойными).

Диодный мост GBU606 — специального охлаждения не имеет, хотя отверстие на нем есть — для крепления радиатора.

Два входных электролитических конденсатора 680 мкФ на 200 вольт, производства Ost (в 450W два 820 мкФ на 200V, того же производителя).

Два алюминиевых радиатора одинаковы, что в 400, что в 450 ваттных моделях, толщина основной пластины 5 мм. На первом радиаторе силовые ключи — два транзистора с маркировкой D209L — полное наименование 2SD209L (на 450 Вт модели пара транзисторов D4515).

Второй радиатор чуть длиннее, на нем выпрямительные диодные сборки: один SRPS2045C — линия +5V поддерживает до 20А. Два включенных параллельно HBR16200 обеспечивают линию +12V, в паре суммарно они теоретически могут давать ток 32А (

384W). И еще один YM3045N — линия 3.3V до 30А. (к сожалению 450 ваттный БП я не подвергал разборке и какие там диоды Шоттки стоят не знаю, но по некоторым данным точно такие же).

Между радиаторами три трансформатора — они идентичны 450 Вт FSP, с той же маркировкой: SPI 8TG00212.

Дежурное напряжение формирует микросхема ШИМ-контроллера, которая расположена у первого радиатора — DM311.

Второй ШИМ-контроллер FSP3528 распаян на отдельной плате с маркировкой FSP3828-20D-17P REV:1.05 и еще маркировка 3BS00898 GP. Даташит этой микросхеме не найден, но есть хорошее описание здесь. В обвязке микросхемы два транзистора G945 и два AZ431. Видимо эта микросхема выполняет роль и компаратора — контроля выходных напряжений.

На обратной стороне платы код E301791 — он принадлежит SHANGHAI WANZHENG CIRCUIT BOARD CO LTD.

На плате разведено место для еще одной платы — OCP Control Board, но ее нету. значит в этом БП нет защиты от перегрузки по току.

Здесь отлично видно пустующее место конденсатора, неужели этот конденсатор и выдает дополнительно 50 Вт в другой модели?

Выходные фильтры и дроссели такие же, как и у 450W модели — один большой дроссель групповой стабилизации и несколько меньших, причем вторая линия +12V имеет всего лишь один дополнительный тороидальный дроссель, который, впрочем, точно такой же, как и в 450 ваттной модели. на выходе мы имеем электролитические конденсаторы, в 400W их на один меньше чем в 450W.

Ко второму радиатору прикручена одна маленькая плата — это контроллер вентилятора, маркировка на плате соответствующая: Fan Speed Board Ver:1 и 3BS00383XXGP. Основа платы контроллер TS358CD. На плату поступает питание 12 вольт, В плату впаян один провод термодатчика (второй идет на «общий» на плате). Сюда же припаиваются два провода, идущие на 120 мм вентилятор блока питания.

На плате сразу видно зияющее пустотой место на плате — подозрительно место, однако. Здесь по идее должен быть большой дроссель пассивного корректора фактора мощности, с креплением на стенку корпуса. Но его нет. А в каких моделях он есть, которые используют эту же самую плату — неизвестно.

+ Щелкните по рисунку, чтобы увеличить!

Под трансформатором такая маркировка на плате: PNR SERIES 3BS0133117GP REV: 1

На обратной стороне платы мы видим маркировку производителя: логотип, название FSP Group INC. Revision: 1. С этой стороны некоторое количество деталей SMD монтажа. Разводка и пайка качественные. Претензий нет.

Читать еще:  Установка боксового кулера на процессор 1151. Правильная установка любого кулера на любой процессор: секрет раскрыт

Итак, сравнивая этот 400 ваттный БП с 450 Вт FSP ATX-450PNR можно сказать — различия минимальны. В FSP ATX-400PNR использованы входные электролиты меньшей емкости, на выходе их распаяли не все. и вот из-за этих деталей знаменитая FSP добавляет или убавляет 50 ватт на этикетке. Жульничество. И если FSP ATX-400PNR вполне хороший БП, то FSP ATX-450PNR уже не очень. По сути один и тот же блок питания, но разной мощности и соответственно разной стоимости.

В остальном — качество сборки отличное, элементы залиты мягким клеем (но это требование для сборки), термоусадочных трубок не пожалели, концы проводов не просто впаяны в плату, а через наконечники.

Напоследок несколько слов об брендах и изготовителях. Не все знают, что блоки питания, носящие имена Antec, SPI, OCZ, SilverStone, Nexus, Zalman на самом деле просто имена, их блоки питания изготавливает тайваньская компания FSP Group INC, а реальное место производства — материковый Китай. Но FSP Group не ограничивается такими именитыми брендами, она производит свои БП и более скромным компаниям, например Cooler Master. В данном случае нас интересует конкретная модель БП, рассмотренная сегодня — ATX-400PNR. Она же присутствует в линейке Cooler Master под именем Elite Power 400W модель RS-400-PSAR-J3. Но и это не все, есть и Cooler Master Elite Power 460W, модель RS-460-PSAR-J3. И если FSP приписали лишних 50 ватт, взяв их с потолка, то Cooler Master добавили 60 Вт, также с потолка. Так как и упоминание об OCP — защите от перегрузки по току, которой нет ни там, ни здесь.

Ниже фото блока питания Cooler Master Elite Power RS-460-PSAR-J3 он же FSP ATX-450PNR

(взято на одном буржуйском сайте)

Конденсаторы входных фильтров.

Этикетка Cooler Master Elite Power RS-400-PSAR-J3

Этикетка Cooler Master Elite Power RS-460-PSAR-J3

Примечание 3: Надо сказать, что сегодняшний блок питания FSP ATX-400PNR мне попал в руки в нерабочем состоянии. Хотя проработал он чуть более года. Вздутые конденсаторы — первое, что бросается в глаза. Но и убитые транзисторы на входе. и кто еще знает чего. Заниматься его ремонтом я не стал — оно того не стоит.

Прежде всего, стандарт описывает требования ко входному напряжению силовой сети, с которым должен работать блок питания.

На практике практически все производители блоков питания в последние годы освоили схемотехнику с активной коррекцией коэффициента мощности (Active PF Correction), позволяющую создавать модели под переменное входное напряжение любой силовой сети мира, в диапазоне от 90В до 260 В. Обязательным требованием стандарта является наличие защиты входных цепей БП от токовой перегрузки, для чего предписывается обязательное наличие плавкого предохранителя.

Базовые спецификации стандарта ATX определяют требования как к основным напряжениям питания, +3,3В, +5В и +12В, так и к вспомогательным шинам питания, −12В и +5VSB (Standby). В первых своих редакциях стандарт ATX также описывал требования по шине -5В, поскольку это напряжение требовалось для питания шины ISA, однако после исчезновения шины ISA требования по этому напряжению были удалены из стандарта ATX.

Первоначально в списке обязательных шин и разъёмов питания стандарт ATX предписывал обязательное наличие 20-контактного разъёма для питания материнских плат, однако, со временем, по мере усложнения компонентов, требования к питанию выросли и стали более жёсткими, и стандарт ATX12V в редакциях 2.x уже предписывает наличие двух разъёмов питания материнской платы: основного 24-контактного (усовершенствованная 20-контактная версия) и дополнительного 4-контактного для питания центрального процессора.

Вот так выглядит цоколёвка современного 24-контактного разъёма питания материнской платы по стандарту ATX12V версий 2.x.

24-контактный разъём ATX 12 V 2. x (к 20-контактной версии добавлены 11, 12, 23 и 24 контакты)

Контакты 8, 13 и 16 являются сигнальными, а не силовыми)

Контакт 20 может использоваться в системах ATX и ATX12V версий 1.2 и старее, для питания шины −5VDC (белый). В версии 1.2 этот контакт пропал, а с версии 1.3 он запрещён.

Отдельного описания заслуживают четыре контакта, на которые возложены специальные функции:

  • 8 контакт — PWR_OK , или «PowerGood » — выходной сигнал блока питания, сигнализирующий финальной стабилизации выходного напряжения и готовности БП к стабильной работе. Обычно сигнал остаётся низким на протяжении 100-500 мс после «заземления» сигнала PS_ON#.
  • 16 контакт — PS_ON# , или «PowerOn » — сигнальный 5-вольтовый контакт. Когда контакт со стороны системной платы подключен к общему проводу («заземлён»), блок питания включается.
  • 9 контакт — +5VSB , или «+5Vstandby » -дежурное напряжение, остаётся даже после отключения блока питания. Необходимо для питания схем, управляющих сигналом «Power On».
  • 13 контакт — питающее напряжение +3,3В, (+3.3Vsense ) — подключается к шине +3,3В материнской платы или её разъёма питания, позволяет обнаруживать падение питающего напряжения дистанционно.

Одним из наиболее важных параметров, регламентируемых стандартом, является стабильность выходного напряжения, обеспечиваемого блоком питания, а также остаточные пульсации, присутствующие в выходном постоянном напряжении. Именно от этих параметров отталкиваются производители при проектировании цепей преобразования, стабилизации и фильтрации напряжений, необходимых для питания компонентов материнских плат.

Для ключевых напряжений питания разброс питающих напряжений не должен превышать ±5% от номинала во всём диапазоне нагрузок. Для менее критичных напряжений допускается разброс порядка ±10% от номинального напряжения. В таблице ниже приведены требования по допустимому отклонению напряжений и максимальным выходным пульсациям.

Пульсации (макс. амплитуда)

Разумеется, чем отклонение питающих напряжений от номинала меньше, тем более стабильной работы можно ожидать от системы в целом. Некоторые производители БП даже заявляют отклонение основных напряжений не более ±3% во всём диапазоне допустимых нагрузок. Это не нормируется стандартом, но, в то же время, говорит об очень высоком качестве этого изделия.

Кроме того, стандарт также описывает кросс-нагрузочные требования шин +5В и +3,3В в зависимости от нагрузки +12В шин для нескольких типовых конфигураций — 250 Вт, 300 Вт, 350 Вт, 400 Вт и 450 Вт. Так, например, выглядит кросс-нагрузочная диаграмма для 450 Вт конфигурации:

Как уже было отмечено выше, начиная с со стандарта ATX12V версии 2.0, основной разъём питания системной платы превратился в 24-контактный, при сохранении обратной совместимости с предыдущим 20-контактным дизайном, при этом дополнительные четыре контакта обеспечивают питание +3,3В, +5В и +12В. Кроме того, в этой версии стандарта дополнительный 6-контактный разъём питания AUX, появившийся в ATX12V версий 1.x, был упразднён, поскольку дополнительные шины питания +3,3В и + 5В были интегрированы в 24-контактный разъём.

Основным напряжением питания системы с этого момента (февраль 2003) считаются шины +12В, поэтому стандарт с этого времени определяет необходимость наличия как минимум двух шин +12В (12V2 для 4-контактного разъёма питания процессора и 12V1 для всего остального), с независимой защитой от токовой перегрузки по каждому каналу. На практике, наиболее мощные блоки питания с тех пор начали обзаводиться и большим количеством шин +12В, однако стандарт требует наличия в обязательном порядке как минимум двух таких шин.

В связи с ростом «ответственности» шин +12В, были снижены требования мощности к шинам +3,3В и +5В. Кроме того, начиная с этой версии обязательным требованием стало наличие разъёмов питания устройств Serial ATA.

В ATX12V версии 2.01 стандарт окончательно избавился от шины -5В, а следующая ревизия, ATX12V v2.1, потребовала обязательного наличия 6-контактного разъёма питания для графических карт PCIe, поскольку слот PCIe, появившийся на материнских платах, требовал питания до 75 Вт. В ATX12V версии 2.2 добавилось требование к обязательному наличию 8-контактного разъёма для питания карт PCIe, обеспечивающего нагрузку до 150 Вт.

В отношении порога срабатывания защит выходного напряжения приняты следующие требования:

Защита от короткого замыкания предписывает обязательное срабатывание при сопротивлении цепи менее 0,1 Ом, при этом блок питания должен отключиться.

В плане шумовых характеристик стандарт предписывает ограничение акустического шума уровнем не более 40 дБ.

Блок питания — одно из самых важных звеньев, составляющих компьютер. Без него не заработает ни один компонент. В то же время, на блок питания часто обращают слишком мало внимания.

Почему же блок питания так важен? Причина проста: каждый компонент в компьютере зависит от стабильного питания — только тогда всё будет работать без сбоев. Любое, даже короткое изменение напряжения может привести к краху системы и отказу компонентов, но многие пользователи об этом даже не задумываются. Когда ПК становится нестабильным, пользователи часто винят слишком агрессивные задержки памяти, «разгон» графической карты или процессора. А ведь блок питания является одним из самых проблемных компонентов! Именно поэтому наша лаборатория не могла обойти его вниманием.

ATX12V 2.01 — новая спецификация

Сегодня в мире ПК наблюдается определённое оживление: на сцену вышли шина PCI Express, память DDR2 и Serial ATA, а также много других новых технологий. Среди них, практически незаметно, красуется стандарт ATX12V 2.01, который призван заменить ATX 1.3.

Наверное, самым заметным изменением стала новая большая вилка ATX, получившая теперь 24 контакта вместо 20 на предыдущей версии.

Классическая вилка ATX (слева) и новая вилка ATX 2.0 (справа).

Переходник с 24 на 20 контактов.

И вполне умная альтернатива — раздельный блок с четырьмя контактами.

Четыре новых контакта — это линии +12 В, +5 В, +3,3 В и дополнительная «земля». Таким образом, старый разъём AUX уходит в небытие — новый стандарт его уже не поддерживает. Раскладка остальных 20-ти контактов не изменилась, то есть два стандарта совместимы, но с некоторыми ограничениями. Чтобы использовать блок питания с 24-контактной вилкой на старой материнской плате, вам понадобится переходник. Впрочем, большинство производителей блоков питания включают его в комплект поставки. Обратная конфигурация тоже возможна, так как 20-контактная вилка входит в 24-контактный разъём.

Однако механика не всегда успешно сожительствует с электроникой. Производитель сам решает, какую комбинацию можно использовать, а какую — нет. Некоторые платы используют дополнительную 4-контактную розетку Molex, как на оптических приводах или винчестерах, к которой подключается соответствующая вилка блока питания. В общем, всегда перед установкой читайте инструкцию к материнской плате.

Механически подключается, но не работает. Так решил производитель материнской платы.

Также в стандарте ATX12V 2.0 появился обязательный разъём питания SATA. Он уже встречался в стандарте 1.3, но теперь стал обязательным. Так что настало время попрощаться с переходниками питания для винчестеров SATA. Тем более, что они весьма неудобны, как показывает практика. Но стандарт ATX не оговаривает число разъёмов питания SATA.

Больше не нужен: переходник SATA.

Разъёмы питания SATA, идущие напрямую от блока питания. Присутствует как прямая вилка, так и угловая.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector