Схемы зарядных устройств для литьевых 12в аккумуляторов. Зарядное устройство для литий-ионных аккумуляторов
Зарядное устройство батарей из трёх литий-ионных аккумуляторов
Предлагаемое зарядное устройство (ЗУ) предназначено для зарядки батарей из трёх элементов литий-ионных аккумуляторов стабильным током до заданного напряжения. ЗУ имеет следующие технические характеристики;
В статье рассматривается небольшая переделка и доработка готовой конструкции, и за основу был взят импульсный блок питания, ремонт которого был представлен в предыдущей статье
В принципе можно использовать любой, подходящий по параметрам, преобразователь сетевого напряжения импульсного типа со стабилизацией выходного напряжения, и далее будет рассмотрено как переделать стабилизированный блок питания в зарядное устройство батареи аккумуляторов. Полная схема и конструктивные особенности переделываемого адаптера не имеют большого значения, поэтому была зарисована только часть схемы вторичного напряжения, в которой нужно будет произвести изменения и доработку, ставшая стандартной для большинства подобных устройств. Маркировка и порядковые номера радиоэлементов соответствуют обозначениям на плате устройства:
Для доработки в первую очередь нужно поднять верхний уровень выходного стабилизированного напряжения до 12,6 В, необходимого для полной зарядки батареи литий-ионных аккумуляторов из трёх элементов. Это напряжение задаётся цепью, состоящей из регулируемого интегрального стабилизатора напряжения параллельного типа TL431 и делителя из резисторов R15 и R16. На сайте “Паяльник” опубликована статья “Буферное зарядное устройство свинцовых аккумуляторов”, где описана подобная возможность изменения напряжения стабилизации:
В данном же случае выходное напряжение можно повысить увеличением сопротивления резистора R15, и для этого можно воспользоваться TL431 калькулятором, но более точное значение сопротивления придётся подобрать опытным путём, и далее будет описано как это сделать.
Из расчётов было определено, что для получения выходного напряжения 12,6 Вольт резистор R15 нужно заменить на резистор сопротивлением 4,1 кОм. Для получения такого сопротивления на плату, вместо бывшего резистора, были установлены два параллельно соединённых резистора с сопротивлением 4,7 кОм и 33 кОм. Для расчёта общего сопротивления параллельно соединённых резисторов можно воспользоваться онлайн калькулятором
Сначала на плату был установлен резистор с сопротивлением 4,7 кОм, и с помощью мультиметра были отобраны несколько резисторов номинала 33 кОм с небольшим разбросом сопротивления. Далее, поочерёдно устанавливая каждый резистор и мультиметром замеряя выходное напряжение блока питания, нужно добиться максимально точного значения 12,6 Вольт. При сильно отличающемся напряжении в ту или иную сторону батарея не будет заряжаться до конца. При слишком низком значении, напряжения просто не хватит для полной зарядки, а при слишком высоком, зарядный ток в конце процесса зарядки не будет падать и плата защиты батареи преждевременно отключит её от цепи. Про это на сайте имеется статья “Самодельная разборная Li-ion 3S батарея с платой контроля и защиты HH – P3-10.8”
Всё это касалось повышения выходного напряжения дорабатываемого блока питания, но для правильной его работы как зарядного устройства, нужно ещё обеспечить постоянство зарядного тока в определённых пределах. Для этого на плате адаптера была разрезана, зачищена и просверлена токопроводящая дорожка положительного полюса вторичного питания, соединяющая два электролитических конденсатора фильтра. В этом месте был установлен токоизмерительный шунт R1 для модуля стабилизации и индикации тока зарядки. Так же был добавлен красный индикаторный светодиод LED2 с токоограничивающим резистором R2. Порядковые номера добавленных радиокомпонентов были заданы сначала, и они не пересекаются с уже имеющимися. Все изменённые и добавленные радиоэлементы на схеме выделены красным цветом:
Кроме этого был разработан и установлен модуль измерения/стабилизации и индикации зарядного тока. Модуль разрабатывался в несколько этапов и каждый раз его параметры улучшались по мере доработки. Изначально пороговым элементом являлся германиевый транзистор прямой проводимости типа МП41, а шунт имел сопротивление 0,33 Ом:
Резисторы R1, R2 и светодиод LED2 установлены на плате самого блока питания, а остальные компоненты были собраны на отдельной плате и двойными точками на схеме отмечены места соединения плат между собой.
Стабилизация работала, так же и индикация, но измерительный шунт заметно нагревался, а ток стабилизации сильно зависел от температуры внутри блока питания, что потребовало доработку модуля и применение кремниевого измерительного транзистора.
Но у кремниевых транзисторов пороговое напряжение открывания выше чем у германиевых, и для компенсации этого в схему была установлена стабильная вольт-добавка на таком же транзисторе:
Доработанная схема работала намного лучше, а сопротивление шунта, и следовательно выделение тепла на нём, получилось немного снизить. Принцип работы такой схемы с вольт-добавкой и расчёт её элементов был описан в статье “Простой способ стабилизации больших токов с малыми потерями на измерительном элементе”
В отзывах читателей указанной статьи было несколько хороших рекомендаций, которые далее были учтены и добавлены в первоначальную схему. Схема данного измерительного модуля так же была доработана и более точно были подобраны номиналы некоторых резисторов. Окончательный вариант схемы модуля представлен на рисунке:
Двойными точками с цифрами так же отмечены места подключения модуля с основной платой зарядного устройства, а полная схема доработанного выходного узла блока питания вместе с модулем измерения и индикации тока зарядки выглядит следующим образом:
- Точка “1” подключается к минусу блока питания;
- “2” – к выходному выводу токоизмерительного шунта;
- “3” – к входному выводу шунта;
- “4” – к оптрону обратной связи;
- “5” – к светодиоду индикации зарядки.
После включения в сеть, пока через нагрузку не течёт ток, дополнительно установленный модуль не влияет на работу адаптера, и выходное напряжение стабилизировано на уровне 12,6 Вольт. При подключении заряжаемого аккумулятора через шунт протекает ток, который обнаруживается транзистором Q1 и далее усиливается транзистором Q3. Коллекторной нагрузкой последнего является светодиод оптрона обратной связи, который начинает светиться всё ярче с ростом протекающего через нагрузку тока, а так как с увеличением яркости его свечения скважность импульсов генератора преобразователя так же увеличивается, то выходное напряжение уменьшается и ток нагрузки стабилизируется. Этот ток зависит от порога открывания измерительного транзистора и задаётся сопротивлением резистора токового шунта.
В активном режиме стабилизации тока транзистор Q4 входит в насыщение и светодиод LED2 светится, сигнализируя о процессе зарядки аккумулятора. Транзистор Q2 играет ключевую роль в значении порога срабатывания измерительного транзистора Q1. На нём создаётся стабильная вольт-добавка, которая складываясь с напряжением на шунте прикладывается к переходу база-эмиттер транзистора Q1 и понижает порог его срабатывания, уменьшая тем самым количество выделяемого на шунте тепла.
Модуль был собран из миниатюрных радиокомпонентов на небольшом отрезке платы подходящих размеров методом навесного монтажа:
Плата была расположена в пространстве между радиаторами силового транзистора и диодной сборки, над импульсным понижающим трансформатором, в перевёрнутом виде, и соединена с основной платой жёсткими разноцветными проводами в двойной изоляции:
В дальнейшем так же была разработана печатная плата для изготовления модуля, на которой оставлена большая часть фольги для экономии вытравливающего раствора и соединения с массой и проводом заземления адаптера (не общим проводом, и не минусом питания), если такой имеется:
Вид печатной платы со стороны расположения радиоэлементов
Вид печатной платы со стороны проводников
Плата рассчитана на установку транзисторов типа КТ209В и КТ315Б, но их можно заменить любыми маломощными соответствующей структуры с коэффициентом передачи тока базы более 50. Ещё лучшие результаты работы будут, если применить транзисторные сборки, но тогда придётся изменить чертёж печатной платы.
Токо-измерительный шунт представляет из себя сложенный вдвое отрезок нихромовой проволоки с подобранным необходимым сопротивлением, но при наличии можно установить обычный низкоомный резистор, или резистор поверхностного монтажа. От его сопротивления в большей степени зависит уровень тока зарядки – чем меньше сопротивление, тем больше ток зарядки, который естественно должен уметь обеспечивать переделываемый блок питания:
Налаживание устройства заключается в установке выходного напряжения 12,6 В без нагрузки, подбором сопротивления верхнего резистора R15 делителя напряжения, и установке желаемого тока заряда подбором сопротивления измерительного шунта.
Для этого нужно взять заведомо большую длину нихромового провода, и подключив к выходу разряженную батарею установить необходимое сопротивление шунта, постепенно укорачивая провод и контролируя силу тока низкоомным амперметром. Подключать батарею нужно обязательно разряженную, так как в конце зарядки ток постепенно будет падать и не удастся установить его номинальное значение.
Производить наладку лучше с реальной батареей, а не с резистивной нагрузкой, так как заряжаемая батарея представляет из себя динамическую нагрузку, и если настраивать не в реальных условиях, то в дальнейшем показания будут отличаться.
Оба резистора, как для настройки выходного напряжения, так и тока нагрузки, расположены в удобных и доступных для многократной пайки местах:
Во время включения с подсоединённой аккумуляторной батареей светится зелёный светодиод индикатора наличия генерации и вторичного напряжения, и дополнительно установленный красный светодиод индикатора зарядки. Не нужно забывать о технике безопасности во время работы с высоким напряжением, и не следует дотрагиваться до оголённых и токопроводящих элементов устройства, находящихся под сетевым напряжением :
Для проверки и налаживания зарядного устройства использовался многофункциональный измеритель параметров заряда/разряда аккумуляторов, включённый по схеме с дополнительным питанием:
Максимальный ток зарядки был установлен в пределах 1,5 А при полностью разряжённой батареи, а по мере зарядки ток незначительно падал, и резко снижался в самом её конце. В этот момент индикаторный светодиод снижал яркость своего свечения, но всё равно оставался информативным, и полностью погасал по достижении полного(почти) заряда батареи, так как установленный в батарее контроллер размыкал цепь.
В завершение устройство было помещено в корпус, а на конец выходного кабеля был установлен унифицированный разъём XT60 с контактами типа “папа”, применяющийся в литий-ионных и литий-полимерных батареях:
В последствии была изготовлена батарея на контроллере с установленной системой балансировки, и проверена возможность её зарядки сконструированным здесь зарядным устройством. Следите за новыми публикациями и оставляйте свои отзывы и рекомендации, которые возможно будут учтены при написании дальнейших статей. Смотрите так же дополнительные материалы по теме:
Самодельное зарядное устройство для литий ионных аккумуляторов шуруповерта
В предыдущей статье я рассматривал вопрос о замене никель-кадмиевых (никель-марганцевых) NiСd(NiMn) аккумуляторов шуруповерта на литиевые. Надо рассмотреть несколько правил по зарядке аккумуляторов.
Литий ионные аккумуляторы размера 18650 в основном могут заряжаться до напряжения 4,20В на ячейку с допустимым отклонением не больше 50 мВ потому, что увеличение напряжения может привести повреждению структуры батареи. Ток заряда аккумулятора может составлять 0,1хС до 1хС (здесь С-емкость). Лучше выбрать эти значение по даташиту. Я применил в переделке шуруповерта аккумуляторы марки Samsung INR18650-30Q 3000mAh 15A . Смотрим даташит-ток зарядки -1,5А.
Наиболее правильным будет провести заряд литиевых аккумуляторов в два приема по методике CCCV (ток постоянный, постоянное напряжение).
Первый этап- должен обеспечить постоянный ток заряда. Величина тока равна 0.2-0.5С. Я применил аккумулятор емкостью 3000 мА/ч, значит номинальный ток заряда будет 600-1500мА. После зарядка банки идет на неизменном напряжении, ток постоянно уменьшается.
Поддерживается напряжение на аккумуляторе в пределах 4.15-4.25В. Аккумулятор зарядился если ток уменьшится до 0.05-0.01С. Принимая во внимание вышесказанное используем электронные платы с Алиэкспресс. Понижающая плата CC/CV с ограничением по току на микросхеме XL4015E1 или на LM2596. Предпочтительней плата на XL4015E1 так, как она более удобна в настройках.
Характеристики XL4015E1.
Максимальный выходной ток до 5 А.
Напряжение на выходе: 0.8 В-30 В.
Напряжение на входе 5 В-32 В.
Плата на LM2596 имеет аналогичные параметры, только ток до 3 А.
Перечень инструментов и материалов.
-адаптер 22012 В, 3 А -1шт;
-штатное зарядное устройство шуруповерта (или источник питания);
-плата заряда CC/CV на XL4015E1 или на LM2596 -1шт;
-соединительные провода -паяльник;
-тестер;
-пластмассовая коробка для плата заряда -1шт;
-минивольтметр -1шт;
-переменный резистор (потенциометр) на 10-20 кОм -1шт;
-разъем питания для аккумуляторного отсека шуруповерта -1шт.
Шаг первый. Сборка ЗУ аккумуляторов шуруповерта на адаптере.
Плату cccv мы уже выбрали выше. В качестве источника питания можно применить любой с такими параметрами-выходное напряжение не ниже 18 В (для схемы 4S),ток 3 А. В первом примере изготовления зарядного устройства для литий-ионных аккумуляторов шуруповерта я использовал адаптер 12 В, 3 А.
Предварительно я проверил какой ток он может выдать пир номинальной нагрузке. Подключил к выходу автолампу и выждал полчаса. Выдает свободно без перегруза 1,9 А. Также измерил температуру на радиаторе транзистора-40°C. Вполне нормальный режим.
Но в этом случае не хватает напряжения. Это легко исправимо, с помощью всего одной копеечной радиодетали-переменного резистора (потенциометр) на 10-20 кОм. Рассмотрим типовую схему адаптера.
На схеме есть управляемый стабилитрон TL431, он находится в цепи обратной связи. Его задача поддерживать стабильное выходное напряжение в соответствие с нагрузкой. Через делитель из двух резисторов он подключен к плюсовому выходу адаптера. Нам нужно припаять к резистору(или выпаять его совсем и на его место припаять, тогда напряжение будет регулироваться и в меньшую сторону) который подключен к выводу 1 стабилитрона TL431 и к минусовой шине переменный резистор. Вращаем ось потенциометра и выставляем нужное напряжение. В моем случае я задал 18 В (небольшой запас от 16,8 В для падения на плате CC/CV). Если у вас напряжение указанное на корпусах электролитических конденсаторах стоящих на выходе схемы будет больше нового напряжения они могут взорваться. Тогда надо заменить их с запасом 30% по напряжению.
Далее подключаем к адаптеру плату для управление зарядом. Выставляем подстроечным резистором на плате напряжение 16,8 В. Другим подстроечным резистором выставляем ток 1,5 А, предварительно подключаем тестер в режиме амперметра к выходу платы. Теперь можно подсоединить литий-ионной сборку шуруповерта. Зарядка прошла нормально, ток к концу заряда упал до минимума, батарея зарядилась. Температура на адаптере была в пределах 40-43°C, что вполне нормально. В перспективе можно в корпусе адаптера для улучшения вентиляции (особенно в летнее время) насверлить отверстия.
Окончание заряда батареи можно увидеть по включению светодиода на плате на XL4015E1. В данном примере я использовал другую плату на LM2596 так, как случайно в ходе экспериментов сжег XL4015E1. Советую делать зарядку лучше на плате XL4015E1.
Шаг второй. Сборка схемы зарядного устройства аккумуляторов шуруповерта на штатном зарядном.
У меня было штатное зарядное от другого шуруповерта. Оно рассчитано на зарядку никель-марганцевых аккумуляторов. Задача стояла в том чтобы заряжать и никель-марганцевые аккумуляторы и литий-ионные.
Это решилось просто- припаял к выходным проводам (красный плюс, черный минус) провода к плате CC/CV.
Напряжение холостого хода на выходе штатное зарядного было 27 В, это вполне подходит для нашей зарядной платы. Далее все то же как и варианте с адаптером.
Окончание зарядки здесь мы видим по изменению цвета свечения светодиода(переключился с красного на зеленый).
Саму плату CC/CV я поместил в подходящую пластмассовую коробку, выведя провода наружу.
Если у вас штатное зарядное на трансформаторе то можно подключить плату CC/CV после диодного мостика выпрямителя.
Способ переделки адаптера под силу начинающим и может пригодиться в других целях, в результате получим бюджетный блок для питания различных устройств.
Подробнее в ролике:
Всем желаю здоровья и успехов в жизни и творчестве!
Простой зарядник для литиевых аккумуляторов
↑ Схема зарядного устройства
LM317 ограничивает ток, TL431+IRF ограничивает напряжение. Ничего особенного, наверняка таких же точно схем уже нарисовали не один десяток. Ограничение тока настроено на 125 мА исходя из возможностей применённого трансформатора и из ограничения на тепловыделение в маленьком пластиковом корпусе. Вообще-то, даже маленькие аккумуляторы от мобилок держат гораздо больший зарядный ток без перегрева.
↑ О литиевых аккумуляторах. Перезаряд недопустим!
Особенность литиевых аккумуляторов в том, что у них очень строгие требования по части режима зарядки и эксплуатации. В частности, совершенно недопустимо их заряжать до напряжения более 4.2 В. Вернее, следует руководствоваться даташитом на конкретную банку, там может быть указан даже меньший безопасный порог.
Поэтому, если вы не уверены в происхождении вашего экземпляра TL431, в точности вашего вольтметра, предельном напряжении аккумулятора т.д., лучше выставить немного меньше, 4.1 — 4.15 В, на всякий случай. Это позволит безопасно заряжать банки, не имеющие встроенной платы защиты.
Кто не видел последствия перезаряда литиевых аккумуляторов, на YouTube можете глянуть, довольно поучительно. Наиболее нестабильными были банки первого поколения, они взрывались особенно зрелищно.
↑ Чертёж печатной платы
Плата делалась достаточно компактной, чтобы вместить её в имеющийся пластиковый корпус.
↑ Сборка, испытания
Травим платку, впаиваем детальки. Включаем… и слышим крик розовой птицы обломинго Нет напряжения питания. Знакомая проблема, в китайском трансформаторе сдох термопредохранитель. Пытаюсь доковыряться до него … и повреждаю провод первичной обмотки
Так, спокойно! Можно, конечно, раздербанить сердечник, отмотать витки, спаять, заизолировать… Да ну его, поищу чего-нибудь другое. Удачно попал в руки старый, ещё трансформаторный, зарядник от Nokia. Если верить надписи на корпусе, он выдаёт 3.7 В 355 мА, на самом деле после выпрямителя и конденсатора получается 12 В без нагрузки и 9 В под нагрузкой 130 мА. С этим трансформатором всё заработало как надо, и по габаритам он не больше предыдущего.
↑ Готовое устройство
Осталось поместить девайс в корпус.
↑ Файлы
▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.
Спасибо за внимание!
Похожие новости
Комментарии (9)
Информация
Вы не можете участвовать в комментировании. Вероятные причины:
— Администратор остановил комментирование этой статьи.
— Вы не авторизовались на сайте. Войдите с паролем.
— Вы не зарегистрированы у нас. Зарегистрируйтесь.
— Вы зарегистрированы, но имеете низкий уровень доступа. Получите полный доступ.
Зарядное устройство для литиевых аккумуляторов
Зарядное устройство для литиевых аккумуляторов по своему строению и принципу работы весьма схоже с ЗУ для свинцово-кислотных. Каждая банка литиевых АКБ имеет более высокое значение напряжения. Кроме того, они более чувствительные к перенапряжению и перезаряду.
Банка – это один живительный элемент. Получил он свое название от схожести с жестяными банками для напитков. Для литиевых элементов наиболее распространенным вариантом является 18650. Это число легко расшифровывается. В миллиметрах указана толщина – 18 и высота – 65.
Если другие виды аккумуляторов позволяют иметь больший разбег в подаваемом напряжении при зарядке, то для литиевых этот показатель должен быть намного точнее. Во время достижения на аккумуляторе напряжения в 4.2 вольта зарядка должна останавливаться, перенапряжение для них опасно. Допускается отклонение от нормы в 0.05 вольта.
Среднее время заряда для литиевых батарей – 3 часа. Это усреднённый показатель, все же каждый отдельный аккумулятор имеет свое значение. От качества зарядки литиевых АКБ зависит срок их службы.
Условия длительного хранения
Совет. Хранить литий-ионные аккумуляторы необходимо правильно. Если устройство долгое время не будет использоваться, то батарею лучше из него вынуть.
Если оставить хранится полностью заряженный аккумуляторный элемент, то он может навсегда утратить часть своей ёмкости. Если оставить хранится разряженную батарею, она может больше не восстановиться. Значит, даже попытавшись ее реанимировать, можно потерпеть фиаско. Поэтому оптимальный рекомендуемый заряд для хранения литиевых банок – 30-50%.
Использование оригинальных зарядных устройств
Некоторые производители указывают, что использование неродных зарядных устройств для li ion аккумуляторов может привести к потере гарантии на устройство. Все дело в том, что плохое зарядное может погубить аккумуляторный элемент. Литиевые батареи могут портиться из-за неправильного напряжения или некорректного затухания в конце зарядки. Поэтому использование оригинального зарядного устройства – это всегда лучший выбор.
Опасность перезаряда и полного разряда
Исходя из устройства литиевых батарей, не рекомендуется допускать их полной разрядки или перезарядки.
К примеру, никель-кадмиевые батареи имеют эффект памяти. Это значит, что неправильный режим зарядки приводит к потере ёмкости. Неправильным считается режим, когда подзаряжается батарея, которая не полностью разрядилась. Если начать заряжать ее в не полностью разряженном состоянии, она может терять свою ёмкость. Зарядные устройства для таких батарей производятся со специальными режимами работы, которые сначала разряжают батарею до нужного уровня, потом начинают ее подзаряжать.
Литиевые батареи не требуют такого хлопотного обслуживания. Эффекта памяти у них нет, но они боятся полной разрядки. Поэтому их лучше подзарядить, когда появляется возможность, не дожидаясь полного разряда. Но и перезаряд для них неприемлем. Поэтому оптимальным будет не допускать разряда ниже 15 % и заряда более 90%. Так можно увеличить срок службы батареи.
Это касается только батарей без защиты. Если у аккумуляторов есть защита, реализованная на отдельной плате, то она отсекает заряд сверх меры, если разряд достигает минимального уровня, то отключает устройство. Обычно это показатели более 4,2 Вольта и 2.7 Вольта, соответственно.
Отношение к перепадам температур
Рабочий диапазон температур для литиевых батарей невелик – от +5 до +25 градусов по Цельсию. Сильные перепады температур нежелательны для их работы.
При перезаряде температура аккумулятора может повышаться, что нехорошо сказывается на его работе. Низкая температура также действует отрицательно. Подмечено, что на морозе аккумуляторы быстрее теряют свой заряд и садятся, хотя в тепле устройство показывает полную зарядку.
Особенности литиевых батарей
Li-ion АКБ являются очень неприхотливыми в эксплуатации. При бережном обращении они прослужат около 3-4 лет. Однако стоит ориентироваться на то, что даже если аккумуляторы не используются, они медленно умирают. Поэтому запасаться аккумуляторами к устройству впрок не совсем резонно. 2 года – это нормальное время от момента производства. Если прошло больше, то это могут быть уже вышедшие из строя батареи.
Интересно. Самый распространенный размер банки 18650 в среднем имеет ёмкость в 3500 мАч. Нормальная цена для такой батареи – 3-4 доллара. Поэтому производители, обещающие за 3 доллара Power bank объемом 10000 мАч, мягко говоря, обманывают. Хорошо, если там будет хотя бы 3000 мАч.
Как правильно заряжать полимерный аккумулятор
Полимерный аккумулятор от ионного отличается только внутренней консистенцией наполнителя. Правила зарядки и эксплуатации применимы к обоим видам этих литиевых батарей.
Как сделать зарядное устройство для литиевого аккумулятора своими руками
Рассмотрим одну из самых простых схем зарядного устройства для литий-ионных аккумуляторов. Самодельная схема зарядки реализована на микросхеме, которая выступает как стабилитрон и контроллер заряда, и транзисторе. База транзистора соединяется с управляющим электродом микросхемы. Литиевые батареи не любят перенапряжения, поэтому на выходе обязательно нужно выставить рекомендуемое напряжение в 4.2 В. Достичь этого можно с помощью регулировки микросхемы сопротивлениями R3 R4, которые имеют значения 3кОм и 2.2 кОм, соответственно. Подключаются они к первой ножке микросхемы. Регулировка задаётся единожды, и напряжение остаётся постоянным.
Чтобы можно было подстроить напряжение на выходе на месте резистора R, устанавливают потенциометр. Производить подстройку нужно без нагрузки, то есть без самого аккумулятора. С его помощью можно точно подстроить напряжение на выходе, равное 4,2 В. Потом вместо потенциометра можно поставить резистор полученного номинала.
Резистор R4 используется, чтобы открывать базу транзистора. Номинал этого сопротивления – 0,22 кОм. Когда аккумулятор будет заряжаться, его напряжение будет расти. От этого электрод управления на транзисторе будет повышать сопротивление эмиттер-коллектора. Это, в свою очередь, будет понижать ток, идущий на аккумулятор.
Ещё нужно отрегулировать ток зарядки. Для этого используют сопротивления R1. Без этого резистора не загорится светодиод, он отвечает за индикацию процесса зарядки. В зависимости от необходимого тока, подбирают резистор номиналом от 3 до 8 Ом.
Как выбрать аккумулятор
Отдельное внимание нужно уделить производителям аккумуляторов. Существуют зарекомендовавшие себя бренды и какие-то неизвестные аналоги. Иногда недобросовестные производители могут продавать товар, который ниже заявленных характеристик в 3 раза и более.
Обратите внимание! К брендам, получившим популярность, можно отнести Panasonic, Sony, Sanyo, Samsung.
Покупка литиевых аккумуляторов не должна вызвать больших проблем. Купить их можно в местных магазинах электроники, в интернет-магазинах или заказать напрямую из Китая. Не стоит гнаться за дешевизной. Хороший аккумулятор не может стоить очень дёшево. Некоторые производители ставят качественные банки, но плохие платы, отвечающие за питание. Это неминуемо приведет к гибели батареи.
Видео
Схемы зарядных устройств для литьевых 12в аккумуляторов. Зарядное устройство для литий-ионных аккумуляторов
В нынешнее время очень популярны литий-ионные аккумуляторы, они используются в различных гаджетах, к примеру телефонах, умных часах, плеерах, фонариках, ноутбуках. Впервые аккумулятор такого типа (Li-ion) выпустила известная японская фирма Sony. Принципиальная схема простейшего зарядного устройства для литиевых аккумуляторов представлена на картинке ниже, собрав её, у вас будет возможность самостоятельно восстанавливать заряд в аккумуляторах.
Самодельная зарядка литиевых АКБ – схема электрическая
Основой для данного прибора являются две микросхемы-стабилизатора 317 и 431 (тема на форуме). Интегральный стабилизатор LM317 в данном случае служит источником тока, данную деталь берём в корпусе TO-220 и обязательно устанавливаем на теплоотвод с применением термопасты. Регулятор напряжения TL431 выпускаемый компанией texas instruments существует кроме этого, в корпусах SOT-89, TO-92, SOP-8, SOT-23, SOT-25 и других.
Рекомендуемое входное напряжение от девяти и до двадцати вольт. Выходное же настраивается подстроечным резистором 22 кОм, оно должно быть в районе 4.2V.
Светодиоды (LED) D1 и D2 любого, приятного для вас цвета. Мной были выбраны такие: LED1 красный прямоугольный 2,5 мм (2,5 милиКандел) и LED2 зелёный диффузионный 3 мм (40-80 милиКандел). Удобно применять smd светодиоды, если вы не будете устанавливать готовую плату в корпус.
Минимальная мощность резистора R2 (22 Ohm) 2 Ватта, а R5 (11 Ohm) 1 Ватт. Все отсальные 0,125-0,25W.
Переменный резистор на 22 килоОма должен быть обязательно типа СП5-2 (импортный 3296W). Такие переменные резистора имеют очень точную регулировку сопротивления, которое можно плавно подстраивать крутя червячную пару, похожую на бронзовый болтик.
Фото измерения вольтажа li-ion аккумулятора от сотового телефона до зарядки (3.7V) и после (4.2V), ёмкость 1100 mA*h.
Печатная плата для литиевого зарядного
Печатная плата (PCB) существует в двух форматах для разных программ – архив находится тут. Размеры готовой печатной платы в моём случае 5 на 2,5 см. По бокам оставил пространство для креплений.
Как работает зарядка
Как работает готовая схема такого зарядного устройства? Сначала аккумулятор заряжается постоянных током, который определяется сопротивление резистора R5, при стандартном номинале 11 Ом он будет примерно 100 мА. Далее, когда перезаряжаемый источник энергии будет иметь напряжение 4,15-4,2 вольта начнется зарядка постоянным напряжением. Когда же ток зарядки снизится до маленьких значений светодиод D1 перестанет светиться.
Как известно, стандартным напряжение для зарядки Li-ion является 4,2V, данную цифру необходимо установить на выходе схемы без нагрузки, с помощью вольтметра, так аккумулятор будет заряжается полностью. Если же немножко снизить напряжение, где-то на 0,05-0,10 Вольт, то ваш аккумулятор будет заряжаться не до конца, но так он прослужит дольше. Автор статьи ЕГОР.
Схемы зарядных устройств для литьевых 12в аккумуляторов. Зарядное устройство для литий-ионных аккумуляторов
В нынешнее время очень популярны литий-ионные аккумуляторы, они используются в различных гаджетах, к примеру телефонах, умных часах, плеерах, фонариках, ноутбуках. Впервые аккумулятор такого типа (Li-ion) выпустила известная японская фирма Sony. Принципиальная схема простейшего зарядного устройства для литиевых аккумуляторов представлена на картинке ниже, собрав её, у вас будет возможность самостоятельно восстанавливать заряд в аккумуляторах.
Самодельная зарядка литиевых АКБ – схема электрическая
Основой для данного прибора являются две микросхемы-стабилизатора 317 и 431 (тема на форуме). Интегральный стабилизатор LM317 в данном случае служит источником тока, данную деталь берём в корпусе TO-220 и обязательно устанавливаем на теплоотвод с применением термопасты. Регулятор напряжения TL431 выпускаемый компанией texas instruments существует кроме этого, в корпусах SOT-89, TO-92, SOP-8, SOT-23, SOT-25 и других.
Рекомендуемое входное напряжение от девяти и до двадцати вольт. Выходное же настраивается подстроечным резистором 22 кОм, оно должно быть в районе 4.2V.
Светодиоды (LED) D1 и D2 любого, приятного для вас цвета. Мной были выбраны такие: LED1 красный прямоугольный 2,5 мм (2,5 милиКандел) и LED2 зелёный диффузионный 3 мм (40-80 милиКандел). Удобно применять smd светодиоды, если вы не будете устанавливать готовую плату в корпус.
Минимальная мощность резистора R2 (22 Ohm) 2 Ватта, а R5 (11 Ohm) 1 Ватт. Все отсальные 0,125-0,25W.
Переменный резистор на 22 килоОма должен быть обязательно типа СП5-2 (импортный 3296W). Такие переменные резистора имеют очень точную регулировку сопротивления, которое можно плавно подстраивать крутя червячную пару, похожую на бронзовый болтик.
Фото измерения вольтажа li-ion аккумулятора от сотового телефона до зарядки (3.7V) и после (4.2V), ёмкость 1100 mA*h.
Печатная плата для литиевого зарядного
Печатная плата (PCB) существует в двух форматах для разных программ – архив находится тут. Размеры готовой печатной платы в моём случае 5 на 2,5 см. По бокам оставил пространство для креплений.
Как работает зарядка
Как работает готовая схема такого зарядного устройства? Сначала аккумулятор заряжается постоянных током, который определяется сопротивление резистора R5, при стандартном номинале 11 Ом он будет примерно 100 мА. Далее, когда перезаряжаемый источник энергии будет иметь напряжение 4,15-4,2 вольта начнется зарядка постоянным напряжением. Когда же ток зарядки снизится до маленьких значений светодиод D1 перестанет светиться.
Как известно, стандартным напряжение для зарядки Li-ion является 4,2V, данную цифру необходимо установить на выходе схемы без нагрузки, с помощью вольтметра, так аккумулятор будет заряжается полностью. Если же немножко снизить напряжение, где-то на 0,05-0,10 Вольт, то ваш аккумулятор будет заряжаться не до конца, но так он прослужит дольше. Автор статьи ЕГОР.